Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ztprmneprm Structured version   Visualization version   GIF version

Theorem ztprmneprm 41890
Description: A prime is not an integer multiple of another prime. (Contributed by AV, 23-May-2019.)
Assertion
Ref Expression
ztprmneprm ((𝑍 ∈ ℤ ∧ 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))

Proof of Theorem ztprmneprm
StepHypRef Expression
1 elznn0nn 11376 . . 3 (𝑍 ∈ ℤ ↔ (𝑍 ∈ ℕ0 ∨ (𝑍 ∈ ℝ ∧ -𝑍 ∈ ℕ)))
2 elnn0 11279 . . . . 5 (𝑍 ∈ ℕ0 ↔ (𝑍 ∈ ℕ ∨ 𝑍 = 0))
3 elnn1uz2 11750 . . . . . . 7 (𝑍 ∈ ℕ ↔ (𝑍 = 1 ∨ 𝑍 ∈ (ℤ‘2)))
4 oveq1 6642 . . . . . . . . . . . 12 (𝑍 = 1 → (𝑍 · 𝐴) = (1 · 𝐴))
54adantr 481 . . . . . . . . . . 11 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → (𝑍 · 𝐴) = (1 · 𝐴))
65eqeq1d 2622 . . . . . . . . . 10 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵 ↔ (1 · 𝐴) = 𝐵))
7 prmz 15370 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℙ → 𝐴 ∈ ℤ)
87zcnd 11468 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℙ → 𝐴 ∈ ℂ)
98mulid2d 10043 . . . . . . . . . . . . . 14 (𝐴 ∈ ℙ → (1 · 𝐴) = 𝐴)
109adantr 481 . . . . . . . . . . . . 13 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (1 · 𝐴) = 𝐴)
1110eqeq1d 2622 . . . . . . . . . . . 12 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((1 · 𝐴) = 𝐵𝐴 = 𝐵))
1211biimpd 219 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((1 · 𝐴) = 𝐵𝐴 = 𝐵))
1312adantl 482 . . . . . . . . . 10 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((1 · 𝐴) = 𝐵𝐴 = 𝐵))
146, 13sylbid 230 . . . . . . . . 9 ((𝑍 = 1 ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))
1514ex 450 . . . . . . . 8 (𝑍 = 1 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
16 prmuz2 15389 . . . . . . . . . . . 12 (𝐴 ∈ ℙ → 𝐴 ∈ (ℤ‘2))
1716adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 ∈ (ℤ‘2))
18 nprm 15382 . . . . . . . . . . 11 ((𝑍 ∈ (ℤ‘2) ∧ 𝐴 ∈ (ℤ‘2)) → ¬ (𝑍 · 𝐴) ∈ ℙ)
1917, 18sylan2 491 . . . . . . . . . 10 ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ¬ (𝑍 · 𝐴) ∈ ℙ)
20 eleq1 2687 . . . . . . . . . . . . 13 ((𝑍 · 𝐴) = 𝐵 → ((𝑍 · 𝐴) ∈ ℙ ↔ 𝐵 ∈ ℙ))
2120notbid 308 . . . . . . . . . . . 12 ((𝑍 · 𝐴) = 𝐵 → (¬ (𝑍 · 𝐴) ∈ ℙ ↔ ¬ 𝐵 ∈ ℙ))
22 pm2.24 121 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℙ → (¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵))
2322adantl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵))
2423adantl 482 . . . . . . . . . . . . 13 ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → (¬ 𝐵 ∈ ℙ → 𝐴 = 𝐵))
2524com12 32 . . . . . . . . . . . 12 𝐵 ∈ ℙ → ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → 𝐴 = 𝐵))
2621, 25syl6bi 243 . . . . . . . . . . 11 ((𝑍 · 𝐴) = 𝐵 → (¬ (𝑍 · 𝐴) ∈ ℙ → ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → 𝐴 = 𝐵)))
2726com3l 89 . . . . . . . . . 10 (¬ (𝑍 · 𝐴) ∈ ℙ → ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
2819, 27mpcom 38 . . . . . . . . 9 ((𝑍 ∈ (ℤ‘2) ∧ (𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ)) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))
2928ex 450 . . . . . . . 8 (𝑍 ∈ (ℤ‘2) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
3015, 29jaoi 394 . . . . . . 7 ((𝑍 = 1 ∨ 𝑍 ∈ (ℤ‘2)) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
313, 30sylbi 207 . . . . . 6 (𝑍 ∈ ℕ → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
32 oveq1 6642 . . . . . . . . 9 (𝑍 = 0 → (𝑍 · 𝐴) = (0 · 𝐴))
3332eqeq1d 2622 . . . . . . . 8 (𝑍 = 0 → ((𝑍 · 𝐴) = 𝐵 ↔ (0 · 𝐴) = 𝐵))
34 prmnn 15369 . . . . . . . . . . . . . 14 (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)
3534nnred 11020 . . . . . . . . . . . . 13 (𝐴 ∈ ℙ → 𝐴 ∈ ℝ)
36 mul02lem2 10198 . . . . . . . . . . . . 13 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)
3735, 36syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℙ → (0 · 𝐴) = 0)
3837adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (0 · 𝐴) = 0)
3938eqeq1d 2622 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((0 · 𝐴) = 𝐵 ↔ 0 = 𝐵))
40 prmnn 15369 . . . . . . . . . . . 12 (𝐵 ∈ ℙ → 𝐵 ∈ ℕ)
41 elnnne0 11291 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ ↔ (𝐵 ∈ ℕ0𝐵 ≠ 0))
42 eqneqall 2802 . . . . . . . . . . . . . . . 16 (𝐵 = 0 → (𝐵 ≠ 0 → 𝐴 = 𝐵))
4342eqcoms 2628 . . . . . . . . . . . . . . 15 (0 = 𝐵 → (𝐵 ≠ 0 → 𝐴 = 𝐵))
4443com12 32 . . . . . . . . . . . . . 14 (𝐵 ≠ 0 → (0 = 𝐵𝐴 = 𝐵))
4544adantl 482 . . . . . . . . . . . . 13 ((𝐵 ∈ ℕ0𝐵 ≠ 0) → (0 = 𝐵𝐴 = 𝐵))
4641, 45sylbi 207 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → (0 = 𝐵𝐴 = 𝐵))
4740, 46syl 17 . . . . . . . . . . 11 (𝐵 ∈ ℙ → (0 = 𝐵𝐴 = 𝐵))
4847adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (0 = 𝐵𝐴 = 𝐵))
4939, 48sylbid 230 . . . . . . . . 9 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((0 · 𝐴) = 𝐵𝐴 = 𝐵))
5049com12 32 . . . . . . . 8 ((0 · 𝐴) = 𝐵 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 = 𝐵))
5133, 50syl6bi 243 . . . . . . 7 (𝑍 = 0 → ((𝑍 · 𝐴) = 𝐵 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 = 𝐵)))
5251com23 86 . . . . . 6 (𝑍 = 0 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
5331, 52jaoi 394 . . . . 5 ((𝑍 ∈ ℕ ∨ 𝑍 = 0) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
542, 53sylbi 207 . . . 4 (𝑍 ∈ ℕ0 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
55 elnnz 11372 . . . . . 6 (-𝑍 ∈ ℕ ↔ (-𝑍 ∈ ℤ ∧ 0 < -𝑍))
56 lt0neg1 10519 . . . . . . . 8 (𝑍 ∈ ℝ → (𝑍 < 0 ↔ 0 < -𝑍))
5734nngt0d 11049 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℙ → 0 < 𝐴)
5857adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 0 < 𝐴)
59 simpr 477 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℝ ∧ 𝑍 < 0) → 𝑍 < 0)
6058, 59anim12ci 590 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → (𝑍 < 0 ∧ 0 < 𝐴))
6160orcd 407 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → ((𝑍 < 0 ∧ 0 < 𝐴) ∨ (0 < 𝑍𝐴 < 0)))
62 simprl 793 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → 𝑍 ∈ ℝ)
6335adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → 𝐴 ∈ ℝ)
6463adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → 𝐴 ∈ ℝ)
6562, 64mul2lt0bi 11921 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → ((𝑍 · 𝐴) < 0 ↔ ((𝑍 < 0 ∧ 0 < 𝐴) ∨ (0 < 𝑍𝐴 < 0))))
6661, 65mpbird 247 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 ∈ ℝ ∧ 𝑍 < 0)) → (𝑍 · 𝐴) < 0)
6766ex 450 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 ∈ ℝ ∧ 𝑍 < 0) → (𝑍 · 𝐴) < 0))
68 breq1 4647 . . . . . . . . . . . . . 14 ((𝑍 · 𝐴) = 𝐵 → ((𝑍 · 𝐴) < 0 ↔ 𝐵 < 0))
6968adantl 482 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 · 𝐴) = 𝐵) → ((𝑍 · 𝐴) < 0 ↔ 𝐵 < 0))
70 nnnn0 11284 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
71 nn0nlt0 11304 . . . . . . . . . . . . . . . . . 18 (𝐵 ∈ ℕ0 → ¬ 𝐵 < 0)
7271pm2.21d 118 . . . . . . . . . . . . . . . . 17 (𝐵 ∈ ℕ0 → (𝐵 < 0 → 𝐴 = 𝐵))
7370, 72syl 17 . . . . . . . . . . . . . . . 16 (𝐵 ∈ ℕ → (𝐵 < 0 → 𝐴 = 𝐵))
7440, 73syl 17 . . . . . . . . . . . . . . 15 (𝐵 ∈ ℙ → (𝐵 < 0 → 𝐴 = 𝐵))
7574adantl 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → (𝐵 < 0 → 𝐴 = 𝐵))
7675adantr 481 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 · 𝐴) = 𝐵) → (𝐵 < 0 → 𝐴 = 𝐵))
7769, 76sylbid 230 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) ∧ (𝑍 · 𝐴) = 𝐵) → ((𝑍 · 𝐴) < 0 → 𝐴 = 𝐵))
7877ex 450 . . . . . . . . . . 11 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵 → ((𝑍 · 𝐴) < 0 → 𝐴 = 𝐵)))
7978com23 86 . . . . . . . . . 10 ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) < 0 → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
8067, 79syldc 48 . . . . . . . . 9 ((𝑍 ∈ ℝ ∧ 𝑍 < 0) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
8180ex 450 . . . . . . . 8 (𝑍 ∈ ℝ → (𝑍 < 0 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8256, 81sylbird 250 . . . . . . 7 (𝑍 ∈ ℝ → (0 < -𝑍 → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8382adantld 483 . . . . . 6 (𝑍 ∈ ℝ → ((-𝑍 ∈ ℤ ∧ 0 < -𝑍) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8455, 83syl5bi 232 . . . . 5 (𝑍 ∈ ℝ → (-𝑍 ∈ ℕ → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))))
8584imp 445 . . . 4 ((𝑍 ∈ ℝ ∧ -𝑍 ∈ ℕ) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
8654, 85jaoi 394 . . 3 ((𝑍 ∈ ℕ0 ∨ (𝑍 ∈ ℝ ∧ -𝑍 ∈ ℕ)) → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
871, 86sylbi 207 . 2 (𝑍 ∈ ℤ → ((𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵)))
88873impib 1260 1 ((𝑍 ∈ ℤ ∧ 𝐴 ∈ ℙ ∧ 𝐵 ∈ ℙ) → ((𝑍 · 𝐴) = 𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791   class class class wbr 4644  cfv 5876  (class class class)co 6635  cr 9920  0cc0 9921  1c1 9922   · cmul 9926   < clt 10059  -cneg 10252  cn 11005  2c2 11055  0cn0 11277  cz 11362  cuz 11672  cprime 15366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-n0 11278  df-z 11363  df-uz 11673  df-rp 11818  df-seq 12785  df-exp 12844  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-dvds 14965  df-prm 15367
This theorem is referenced by:  zlmodzxznm  42051
  Copyright terms: Public domain W3C validator