Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zsupss Structured version   Visualization version   GIF version

Theorem zsupss 11980
 Description: Any nonempty bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-sup 10216.) (Contributed by Mario Carneiro, 21-Apr-2015.)
Assertion
Ref Expression
zsupss ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑦,𝑧)

Proof of Theorem zsupss
Dummy variables 𝑚 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4789 . . . . . 6 (𝑦 = 𝑚 → (𝑦𝑥𝑚𝑥))
21cbvralv 3320 . . . . 5 (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑚𝐴 𝑚𝑥)
3 breq2 4790 . . . . . 6 (𝑥 = 𝑛 → (𝑚𝑥𝑚𝑛))
43ralbidv 3135 . . . . 5 (𝑥 = 𝑛 → (∀𝑚𝐴 𝑚𝑥 ↔ ∀𝑚𝐴 𝑚𝑛))
52, 4syl5bb 272 . . . 4 (𝑥 = 𝑛 → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑚𝐴 𝑚𝑛))
65cbvrexv 3321 . . 3 (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 ↔ ∃𝑛 ∈ ℤ ∀𝑚𝐴 𝑚𝑛)
7 simp1rl 1304 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑛 ∈ ℤ)
87znegcld 11686 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑛 ∈ ℤ)
9 simp2 1131 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ ℤ)
109zred 11684 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ ℝ)
117zred 11684 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑛 ∈ ℝ)
12 breq1 4789 . . . . . . . . . . 11 (𝑚 = -𝑤 → (𝑚𝑛 ↔ -𝑤𝑛))
13 simp1rr 1305 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → ∀𝑚𝐴 𝑚𝑛)
14 simp3 1132 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑤𝐴)
1512, 13, 14rspcdva 3466 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑤𝑛)
1610, 11, 15lenegcon1d 10811 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑛𝑤)
17 eluz2 11894 . . . . . . . . 9 (𝑤 ∈ (ℤ‘-𝑛) ↔ (-𝑛 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ -𝑛𝑤))
188, 9, 16, 17syl3anbrc 1428 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ (ℤ‘-𝑛))
1918rabssdv 3831 . . . . . . 7 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛))
20 n0 4078 . . . . . . . . . 10 (𝐴 ≠ ∅ ↔ ∃𝑛 𝑛𝐴)
21 ssel2 3747 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛 ∈ ℤ)
2221znegcld 11686 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → -𝑛 ∈ ℤ)
2321zcnd 11685 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛 ∈ ℂ)
2423negnegd 10585 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → --𝑛 = 𝑛)
25 simpr 471 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛𝐴)
2624, 25eqeltrd 2850 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → --𝑛𝐴)
27 negeq 10475 . . . . . . . . . . . . . . . 16 (𝑤 = -𝑛 → -𝑤 = --𝑛)
2827eleq1d 2835 . . . . . . . . . . . . . . 15 (𝑤 = -𝑛 → (-𝑤𝐴 ↔ --𝑛𝐴))
2928rspcev 3460 . . . . . . . . . . . . . 14 ((-𝑛 ∈ ℤ ∧ --𝑛𝐴) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3022, 26, 29syl2anc 573 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3130ex 397 . . . . . . . . . . . 12 (𝐴 ⊆ ℤ → (𝑛𝐴 → ∃𝑤 ∈ ℤ -𝑤𝐴))
3231exlimdv 2013 . . . . . . . . . . 11 (𝐴 ⊆ ℤ → (∃𝑛 𝑛𝐴 → ∃𝑤 ∈ ℤ -𝑤𝐴))
3332imp 393 . . . . . . . . . 10 ((𝐴 ⊆ ℤ ∧ ∃𝑛 𝑛𝐴) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3420, 33sylan2b 581 . . . . . . . . 9 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3534adantr 466 . . . . . . . 8 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∃𝑤 ∈ ℤ -𝑤𝐴)
36 rabn0 4104 . . . . . . . 8 ({𝑤 ∈ ℤ ∣ -𝑤𝐴} ≠ ∅ ↔ ∃𝑤 ∈ ℤ -𝑤𝐴)
3735, 36sylibr 224 . . . . . . 7 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ≠ ∅)
38 infssuzcl 11975 . . . . . . 7 (({𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛) ∧ {𝑤 ∈ ℤ ∣ -𝑤𝐴} ≠ ∅) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
3919, 37, 38syl2anc 573 . . . . . 6 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
40 negeq 10475 . . . . . . . . 9 (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → -𝑛 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ))
4140eleq1d 2835 . . . . . . . 8 (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (-𝑛𝐴 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴))
42 negeq 10475 . . . . . . . . . 10 (𝑤 = 𝑛 → -𝑤 = -𝑛)
4342eleq1d 2835 . . . . . . . . 9 (𝑤 = 𝑛 → (-𝑤𝐴 ↔ -𝑛𝐴))
4443cbvrabv 3349 . . . . . . . 8 {𝑤 ∈ ℤ ∣ -𝑤𝐴} = {𝑛 ∈ ℤ ∣ -𝑛𝐴}
4541, 44elrab2 3518 . . . . . . 7 (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} ↔ (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ ∧ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴))
4645simprbi 484 . . . . . 6 (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴)
4739, 46syl 17 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴)
48 ssrab2 3836 . . . . . . . . . 10 {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ ℤ
4939adantr 466 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
5048, 49sseldi 3750 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ)
5150zred 11684 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
52 simpll 750 . . . . . . . . . 10 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → 𝐴 ⊆ ℤ)
5352sselda 3752 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ∈ ℤ)
5453zred 11684 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
5519adantr 466 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛))
5653znegcld 11686 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -𝑦 ∈ ℤ)
5753zcnd 11685 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ∈ ℂ)
5857negnegd 10585 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → --𝑦 = 𝑦)
59 simpr 471 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦𝐴)
6058, 59eqeltrd 2850 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → --𝑦𝐴)
61 negeq 10475 . . . . . . . . . . . 12 (𝑤 = -𝑦 → -𝑤 = --𝑦)
6261eleq1d 2835 . . . . . . . . . . 11 (𝑤 = -𝑦 → (-𝑤𝐴 ↔ --𝑦𝐴))
6362elrab 3515 . . . . . . . . . 10 (-𝑦 ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} ↔ (-𝑦 ∈ ℤ ∧ --𝑦𝐴))
6456, 60, 63sylanbrc 572 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -𝑦 ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
65 infssuzle 11974 . . . . . . . . 9 (({𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛) ∧ -𝑦 ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴}) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ≤ -𝑦)
6655, 64, 65syl2anc 573 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ≤ -𝑦)
6751, 54, 66lenegcon2d 10812 . . . . . . 7 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ≤ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ))
6850znegcld 11686 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ)
6968zred 11684 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
7054, 69lenltd 10385 . . . . . . 7 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → (𝑦 ≤ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ↔ ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
7167, 70mpbid 222 . . . . . 6 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦)
7271ralrimiva 3115 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦)
73 breq2 4790 . . . . . . . . 9 (𝑧 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑦 < 𝑧𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )))
7473rspcev 3460 . . . . . . . 8 ((-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )) → ∃𝑧𝐴 𝑦 < 𝑧)
7574ex 397 . . . . . . 7 (-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴 → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
7647, 75syl 17 . . . . . 6 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
7776ralrimivw 3116 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
78 breq1 4789 . . . . . . . . 9 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑥 < 𝑦 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
7978notbid 307 . . . . . . . 8 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (¬ 𝑥 < 𝑦 ↔ ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
8079ralbidv 3135 . . . . . . 7 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
81 breq2 4790 . . . . . . . . 9 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑦 < 𝑥𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )))
8281imbi1d 330 . . . . . . . 8 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧)))
8382ralbidv 3135 . . . . . . 7 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧)))
8480, 83anbi12d 616 . . . . . 6 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))))
8584rspcev 3460 . . . . 5 ((-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴 ∧ (∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8647, 72, 77, 85syl12anc 1474 . . . 4 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8786rexlimdvaa 3180 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) → (∃𝑛 ∈ ℤ ∀𝑚𝐴 𝑚𝑛 → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
886, 87syl5bi 232 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
89883impia 1109 1 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   ∧ w3a 1071   = wceq 1631  ∃wex 1852   ∈ wcel 2145   ≠ wne 2943  ∀wral 3061  ∃wrex 3062  {crab 3065   ⊆ wss 3723  ∅c0 4063   class class class wbr 4786  ‘cfv 6031  infcinf 8503  ℝcr 10137   < clt 10276   ≤ cle 10277  -cneg 10469  ℤcz 11579  ℤ≥cuz 11888 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-sup 8504  df-inf 8505  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889 This theorem is referenced by:  suprzcl2  11981  suprzub  11982  uzsupss  11983
 Copyright terms: Public domain W3C validator