MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zsupss Structured version   Visualization version   GIF version

Theorem zsupss 11762
Description: Any nonempty bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-sup 9999.) (Contributed by Mario Carneiro, 21-Apr-2015.)
Assertion
Ref Expression
zsupss ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐵(𝑦,𝑧)

Proof of Theorem zsupss
Dummy variables 𝑚 𝑛 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4647 . . . . . 6 (𝑦 = 𝑚 → (𝑦𝑥𝑚𝑥))
21cbvralv 3166 . . . . 5 (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑚𝐴 𝑚𝑥)
3 breq2 4648 . . . . . 6 (𝑥 = 𝑛 → (𝑚𝑥𝑚𝑛))
43ralbidv 2983 . . . . 5 (𝑥 = 𝑛 → (∀𝑚𝐴 𝑚𝑥 ↔ ∀𝑚𝐴 𝑚𝑛))
52, 4syl5bb 272 . . . 4 (𝑥 = 𝑛 → (∀𝑦𝐴 𝑦𝑥 ↔ ∀𝑚𝐴 𝑚𝑛))
65cbvrexv 3167 . . 3 (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 ↔ ∃𝑛 ∈ ℤ ∀𝑚𝐴 𝑚𝑛)
7 simp1rl 1124 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑛 ∈ ℤ)
87znegcld 11469 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑛 ∈ ℤ)
9 simp2 1060 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ ℤ)
109zred 11467 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ ℝ)
117zred 11467 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑛 ∈ ℝ)
12 simp3 1061 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑤𝐴)
13 simp1rr 1125 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → ∀𝑚𝐴 𝑚𝑛)
14 breq1 4647 . . . . . . . . . . . 12 (𝑚 = -𝑤 → (𝑚𝑛 ↔ -𝑤𝑛))
1514rspcv 3300 . . . . . . . . . . 11 (-𝑤𝐴 → (∀𝑚𝐴 𝑚𝑛 → -𝑤𝑛))
1612, 13, 15sylc 65 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑤𝑛)
1710, 11, 16lenegcon1d 10594 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → -𝑛𝑤)
18 eluz2 11678 . . . . . . . . 9 (𝑤 ∈ (ℤ‘-𝑛) ↔ (-𝑛 ∈ ℤ ∧ 𝑤 ∈ ℤ ∧ -𝑛𝑤))
198, 9, 17, 18syl3anbrc 1244 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑤 ∈ ℤ ∧ -𝑤𝐴) → 𝑤 ∈ (ℤ‘-𝑛))
2019rabssdv 3674 . . . . . . 7 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛))
21 n0 3923 . . . . . . . . . 10 (𝐴 ≠ ∅ ↔ ∃𝑛 𝑛𝐴)
22 ssel2 3590 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛 ∈ ℤ)
2322znegcld 11469 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → -𝑛 ∈ ℤ)
2422zcnd 11468 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛 ∈ ℂ)
2524negnegd 10368 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → --𝑛 = 𝑛)
26 simpr 477 . . . . . . . . . . . . . . 15 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → 𝑛𝐴)
2725, 26eqeltrd 2699 . . . . . . . . . . . . . 14 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → --𝑛𝐴)
28 negeq 10258 . . . . . . . . . . . . . . . 16 (𝑤 = -𝑛 → -𝑤 = --𝑛)
2928eleq1d 2684 . . . . . . . . . . . . . . 15 (𝑤 = -𝑛 → (-𝑤𝐴 ↔ --𝑛𝐴))
3029rspcev 3304 . . . . . . . . . . . . . 14 ((-𝑛 ∈ ℤ ∧ --𝑛𝐴) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3123, 27, 30syl2anc 692 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℤ ∧ 𝑛𝐴) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3231ex 450 . . . . . . . . . . . 12 (𝐴 ⊆ ℤ → (𝑛𝐴 → ∃𝑤 ∈ ℤ -𝑤𝐴))
3332exlimdv 1859 . . . . . . . . . . 11 (𝐴 ⊆ ℤ → (∃𝑛 𝑛𝐴 → ∃𝑤 ∈ ℤ -𝑤𝐴))
3433imp 445 . . . . . . . . . 10 ((𝐴 ⊆ ℤ ∧ ∃𝑛 𝑛𝐴) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3521, 34sylan2b 492 . . . . . . . . 9 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) → ∃𝑤 ∈ ℤ -𝑤𝐴)
3635adantr 481 . . . . . . . 8 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∃𝑤 ∈ ℤ -𝑤𝐴)
37 rabn0 3949 . . . . . . . 8 ({𝑤 ∈ ℤ ∣ -𝑤𝐴} ≠ ∅ ↔ ∃𝑤 ∈ ℤ -𝑤𝐴)
3836, 37sylibr 224 . . . . . . 7 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ≠ ∅)
39 infssuzcl 11757 . . . . . . 7 (({𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛) ∧ {𝑤 ∈ ℤ ∣ -𝑤𝐴} ≠ ∅) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
4020, 38, 39syl2anc 692 . . . . . 6 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
41 negeq 10258 . . . . . . . . 9 (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → -𝑛 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ))
4241eleq1d 2684 . . . . . . . 8 (𝑛 = inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (-𝑛𝐴 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴))
43 negeq 10258 . . . . . . . . . 10 (𝑤 = 𝑛 → -𝑤 = -𝑛)
4443eleq1d 2684 . . . . . . . . 9 (𝑤 = 𝑛 → (-𝑤𝐴 ↔ -𝑛𝐴))
4544cbvrabv 3194 . . . . . . . 8 {𝑤 ∈ ℤ ∣ -𝑤𝐴} = {𝑛 ∈ ℤ ∣ -𝑛𝐴}
4642, 45elrab2 3360 . . . . . . 7 (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} ↔ (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ ∧ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴))
4746simprbi 480 . . . . . 6 (inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴)
4840, 47syl 17 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴)
49 ssrab2 3679 . . . . . . . . . 10 {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ ℤ
5040adantr 481 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
5149, 50sseldi 3593 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ)
5251zred 11467 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
53 simpll 789 . . . . . . . . . 10 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → 𝐴 ⊆ ℤ)
5453sselda 3595 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ∈ ℤ)
5554zred 11467 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
5620adantr 481 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → {𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛))
5754znegcld 11469 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -𝑦 ∈ ℤ)
5854zcnd 11468 . . . . . . . . . . . 12 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ∈ ℂ)
5958negnegd 10368 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → --𝑦 = 𝑦)
60 simpr 477 . . . . . . . . . . 11 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦𝐴)
6159, 60eqeltrd 2699 . . . . . . . . . 10 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → --𝑦𝐴)
62 negeq 10258 . . . . . . . . . . . 12 (𝑤 = -𝑦 → -𝑤 = --𝑦)
6362eleq1d 2684 . . . . . . . . . . 11 (𝑤 = -𝑦 → (-𝑤𝐴 ↔ --𝑦𝐴))
6463elrab 3357 . . . . . . . . . 10 (-𝑦 ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴} ↔ (-𝑦 ∈ ℤ ∧ --𝑦𝐴))
6557, 61, 64sylanbrc 697 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -𝑦 ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴})
66 infssuzle 11756 . . . . . . . . 9 (({𝑤 ∈ ℤ ∣ -𝑤𝐴} ⊆ (ℤ‘-𝑛) ∧ -𝑦 ∈ {𝑤 ∈ ℤ ∣ -𝑤𝐴}) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ≤ -𝑦)
6756, 65, 66syl2anc 692 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ≤ -𝑦)
6852, 55, 67lenegcon2d 10595 . . . . . . 7 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → 𝑦 ≤ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ))
6951znegcld 11469 . . . . . . . . 9 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℤ)
7069zred 11467 . . . . . . . 8 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ ℝ)
7155, 70lenltd 10168 . . . . . . 7 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → (𝑦 ≤ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ↔ ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
7268, 71mpbid 222 . . . . . 6 ((((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) ∧ 𝑦𝐴) → ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦)
7372ralrimiva 2963 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦)
74 breq2 4648 . . . . . . . . 9 (𝑧 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑦 < 𝑧𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )))
7574rspcev 3304 . . . . . . . 8 ((-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )) → ∃𝑧𝐴 𝑦 < 𝑧)
7675ex 450 . . . . . . 7 (-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴 → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
7748, 76syl 17 . . . . . 6 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
7877ralrimivw 2964 . . . . 5 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))
79 breq1 4647 . . . . . . . . 9 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑥 < 𝑦 ↔ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
8079notbid 308 . . . . . . . 8 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (¬ 𝑥 < 𝑦 ↔ ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
8180ralbidv 2983 . . . . . . 7 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦))
82 breq2 4648 . . . . . . . . 9 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (𝑦 < 𝑥𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < )))
8382imbi1d 331 . . . . . . . 8 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧)))
8483ralbidv 2983 . . . . . . 7 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → (∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧)))
8581, 84anbi12d 746 . . . . . 6 (𝑥 = -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))))
8685rspcev 3304 . . . . 5 ((-inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) ∈ 𝐴 ∧ (∀𝑦𝐴 ¬ -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < -inf({𝑤 ∈ ℤ ∣ -𝑤𝐴}, ℝ, < ) → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8748, 73, 78, 86syl12anc 1322 . . . 4 (((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) ∧ (𝑛 ∈ ℤ ∧ ∀𝑚𝐴 𝑚𝑛)) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
8887rexlimdvaa 3028 . . 3 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) → (∃𝑛 ∈ ℤ ∀𝑚𝐴 𝑚𝑛 → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
896, 88syl5bi 232 . 2 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥 → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
90893impia 1259 1 ((𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥) → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1036   = wceq 1481  wex 1702  wcel 1988  wne 2791  wral 2909  wrex 2910  {crab 2913  wss 3567  c0 3907   class class class wbr 4644  cfv 5876  infcinf 8332  cr 9920   < clt 10059  cle 10060  -cneg 10252  cz 11362  cuz 11672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-sup 8333  df-inf 8334  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-n0 11278  df-z 11363  df-uz 11673
This theorem is referenced by:  suprzcl2  11763  suprzub  11764  uzsupss  11765
  Copyright terms: Public domain W3C validator