![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zsssubrg | Structured version Visualization version GIF version |
Description: The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
zsssubrg | ⊢ (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 471 | . . . . . 6 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) | |
2 | ax-1cn 10196 | . . . . . 6 ⊢ 1 ∈ ℂ | |
3 | cnfldmulg 19993 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑥(.g‘ℂfld)1) = (𝑥 · 1)) | |
4 | 1, 2, 3 | sylancl 574 | . . . . 5 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘ℂfld)1) = (𝑥 · 1)) |
5 | zcn 11584 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
6 | 5 | adantl 467 | . . . . . 6 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ) |
7 | 6 | mulid1d 10259 | . . . . 5 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → (𝑥 · 1) = 𝑥) |
8 | 4, 7 | eqtrd 2805 | . . . 4 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘ℂfld)1) = 𝑥) |
9 | subrgsubg 18996 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘ℂfld) → 𝑅 ∈ (SubGrp‘ℂfld)) | |
10 | 9 | adantr 466 | . . . . 5 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 𝑅 ∈ (SubGrp‘ℂfld)) |
11 | cnfld1 19986 | . . . . . . 7 ⊢ 1 = (1r‘ℂfld) | |
12 | 11 | subrg1cl 18998 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘ℂfld) → 1 ∈ 𝑅) |
13 | 12 | adantr 466 | . . . . 5 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 1 ∈ 𝑅) |
14 | eqid 2771 | . . . . . 6 ⊢ (.g‘ℂfld) = (.g‘ℂfld) | |
15 | 14 | subgmulgcl 17815 | . . . . 5 ⊢ ((𝑅 ∈ (SubGrp‘ℂfld) ∧ 𝑥 ∈ ℤ ∧ 1 ∈ 𝑅) → (𝑥(.g‘ℂfld)1) ∈ 𝑅) |
16 | 10, 1, 13, 15 | syl3anc 1476 | . . . 4 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘ℂfld)1) ∈ 𝑅) |
17 | 8, 16 | eqeltrrd 2851 | . . 3 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ 𝑅) |
18 | 17 | ex 397 | . 2 ⊢ (𝑅 ∈ (SubRing‘ℂfld) → (𝑥 ∈ ℤ → 𝑥 ∈ 𝑅)) |
19 | 18 | ssrdv 3758 | 1 ⊢ (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ⊆ wss 3723 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 1c1 10139 · cmul 10143 ℤcz 11579 .gcmg 17748 SubGrpcsubg 17796 SubRingcsubrg 18986 ℂfldccnfld 19961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-seq 13009 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-minusg 17634 df-mulg 17749 df-subg 17799 df-cmn 18402 df-mgp 18698 df-ur 18710 df-ring 18757 df-cring 18758 df-subrg 18988 df-cnfld 19962 |
This theorem is referenced by: qsssubdrg 20020 clmzss 23097 dvply2g 24260 |
Copyright terms: Public domain | W3C validator |