![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zsscn | Structured version Visualization version GIF version |
Description: The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.) |
Ref | Expression |
---|---|
zsscn | ⊢ ℤ ⊆ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 11420 | . 2 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
2 | 1 | ssriv 3640 | 1 ⊢ ℤ ⊆ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3607 ℂcc 9972 ℤcz 11415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-resscn 10031 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-iota 5889 df-fv 5934 df-ov 6693 df-neg 10307 df-z 11416 |
This theorem is referenced by: zex 11424 elq 11828 zexpcl 12915 fsumzcl 14510 fprodzcl 14728 zrisefaccl 14795 zfallfaccl 14796 4sqlem11 15706 zringbas 19872 zring0 19876 lmbrf 21112 lmres 21152 sszcld 22667 lmmbrf 23106 iscauf 23124 caucfil 23127 lmclimf 23148 elqaalem3 24121 iaa 24125 aareccl 24126 wilthlem2 24840 wilthlem3 24841 lgsfcl2 25073 2sqlem6 25193 zringnm 30132 fsum2dsub 30813 reprsuc 30821 caures 33686 mzpexpmpt 37625 uzmptshftfval 38862 fzsscn 39839 dvnprodlem1 40479 dvnprodlem2 40480 elaa2lem 40768 oddibas 42138 2zrngbas 42261 2zrng0 42263 |
Copyright terms: Public domain | W3C validator |