![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zsqrtelqelz | Structured version Visualization version GIF version |
Description: If an integer has a rational square root, that root is must be an integer. (Contributed by Stefan O'Rear, 15-Sep-2014.) |
Ref | Expression |
---|---|
zsqrtelqelz | ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qdencl 15656 | . . . . 5 ⊢ ((√‘𝐴) ∈ ℚ → (denom‘(√‘𝐴)) ∈ ℕ) | |
2 | 1 | adantl 467 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℕ) |
3 | 2 | nnred 11237 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℝ) |
4 | 1red 10257 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 1 ∈ ℝ) | |
5 | 2 | nnnn0d 11553 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) ∈ ℕ0) |
6 | 5 | nn0ge0d 11556 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ (denom‘(√‘𝐴))) |
7 | 0le1 10753 | . . . 4 ⊢ 0 ≤ 1 | |
8 | 7 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 0 ≤ 1) |
9 | sq1 13165 | . . . . 5 ⊢ (1↑2) = 1 | |
10 | 9 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (1↑2) = 1) |
11 | zcn 11584 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
12 | 11 | sqsqrtd 14386 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → ((√‘𝐴)↑2) = 𝐴) |
13 | 12 | adantr 466 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((√‘𝐴)↑2) = 𝐴) |
14 | 13 | fveq2d 6336 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = (denom‘𝐴)) |
15 | simpl 468 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℤ) | |
16 | zq 11997 | . . . . . . . 8 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℚ) | |
17 | 16 | adantr 466 | . . . . . . 7 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → 𝐴 ∈ ℚ) |
18 | qden1elz 15672 | . . . . . . 7 ⊢ (𝐴 ∈ ℚ → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((denom‘𝐴) = 1 ↔ 𝐴 ∈ ℤ)) |
20 | 15, 19 | mpbird 247 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘𝐴) = 1) |
21 | 14, 20 | eqtrd 2805 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = 1) |
22 | densq 15671 | . . . . 5 ⊢ ((√‘𝐴) ∈ ℚ → (denom‘((√‘𝐴)↑2)) = ((denom‘(√‘𝐴))↑2)) | |
23 | 22 | adantl 467 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘((√‘𝐴)↑2)) = ((denom‘(√‘𝐴))↑2)) |
24 | 10, 21, 23 | 3eqtr2rd 2812 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((denom‘(√‘𝐴))↑2) = (1↑2)) |
25 | 3, 4, 6, 8, 24 | sq11d 13252 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (denom‘(√‘𝐴)) = 1) |
26 | qden1elz 15672 | . . 3 ⊢ ((√‘𝐴) ∈ ℚ → ((denom‘(√‘𝐴)) = 1 ↔ (√‘𝐴) ∈ ℤ)) | |
27 | 26 | adantl 467 | . 2 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → ((denom‘(√‘𝐴)) = 1 ↔ (√‘𝐴) ∈ ℤ)) |
28 | 25, 27 | mpbid 222 | 1 ⊢ ((𝐴 ∈ ℤ ∧ (√‘𝐴) ∈ ℚ) → (√‘𝐴) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 0cc0 10138 1c1 10139 ≤ cle 10277 ℕcn 11222 2c2 11272 ℤcz 11579 ℚcq 11991 ↑cexp 13067 √csqrt 14181 denomcdenom 15649 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-n0 11495 df-z 11580 df-uz 11889 df-q 11992 df-rp 12036 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-dvds 15190 df-gcd 15425 df-numer 15650 df-denom 15651 |
This theorem is referenced by: nonsq 15674 dchrisum0flblem2 25419 |
Copyright terms: Public domain | W3C validator |