Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zrninitoringc Structured version   Visualization version   GIF version

Theorem zrninitoringc 42599
Description: The zero ring is not an initial object in the category of unital rings (if the universe contains at least one unital ring different from the zero ring). (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
zrtermoringc.u (𝜑𝑈𝑉)
zrtermoringc.c 𝐶 = (RingCat‘𝑈)
zrtermoringc.z (𝜑𝑍 ∈ (Ring ∖ NzRing))
zrtermoringc.e (𝜑𝑍𝑈)
zrninitoringc.e (𝜑 → ∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing)
Assertion
Ref Expression
zrninitoringc (𝜑𝑍 ∉ (InitO‘𝐶))
Distinct variable groups:   𝐶,𝑟   𝑍,𝑟   𝜑,𝑟
Allowed substitution hints:   𝑈(𝑟)   𝑉(𝑟)

Proof of Theorem zrninitoringc
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 zrninitoringc.e . . . 4 (𝜑 → ∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing)
2 zrtermoringc.c . . . . . . . . . . 11 𝐶 = (RingCat‘𝑈)
3 eqid 2760 . . . . . . . . . . 11 (Base‘𝐶) = (Base‘𝐶)
4 zrtermoringc.u . . . . . . . . . . . 12 (𝜑𝑈𝑉)
54ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → 𝑈𝑉)
6 eqid 2760 . . . . . . . . . . 11 (Hom ‘𝐶) = (Hom ‘𝐶)
7 zrtermoringc.e . . . . . . . . . . . . . 14 (𝜑𝑍𝑈)
8 zrtermoringc.z . . . . . . . . . . . . . . 15 (𝜑𝑍 ∈ (Ring ∖ NzRing))
98eldifad 3727 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ Ring)
107, 9elind 3941 . . . . . . . . . . . . 13 (𝜑𝑍 ∈ (𝑈 ∩ Ring))
112, 3, 4ringcbas 42539 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝐶) = (𝑈 ∩ Ring))
1210, 11eleqtrrd 2842 . . . . . . . . . . . 12 (𝜑𝑍 ∈ (Base‘𝐶))
1312ad2antrr 764 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → 𝑍 ∈ (Base‘𝐶))
14 simplr 809 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → 𝑟 ∈ (Base‘𝐶))
152, 3, 5, 6, 13, 14ringchom 42541 . . . . . . . . . 10 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → (𝑍(Hom ‘𝐶)𝑟) = (𝑍 RingHom 𝑟))
168adantr 472 . . . . . . . . . . 11 ((𝜑𝑟 ∈ (Base‘𝐶)) → 𝑍 ∈ (Ring ∖ NzRing))
17 nrhmzr 42401 . . . . . . . . . . 11 ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑟 ∈ NzRing) → (𝑍 RingHom 𝑟) = ∅)
1816, 17sylan 489 . . . . . . . . . 10 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → (𝑍 RingHom 𝑟) = ∅)
1915, 18eqtrd 2794 . . . . . . . . 9 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → (𝑍(Hom ‘𝐶)𝑟) = ∅)
20 eq0 4072 . . . . . . . . 9 ((𝑍(Hom ‘𝐶)𝑟) = ∅ ↔ ∀ ¬ ∈ (𝑍(Hom ‘𝐶)𝑟))
2119, 20sylib 208 . . . . . . . 8 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → ∀ ¬ ∈ (𝑍(Hom ‘𝐶)𝑟))
22 alnex 1855 . . . . . . . 8 (∀ ¬ ∈ (𝑍(Hom ‘𝐶)𝑟) ↔ ¬ ∃ ∈ (𝑍(Hom ‘𝐶)𝑟))
2321, 22sylib 208 . . . . . . 7 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → ¬ ∃ ∈ (𝑍(Hom ‘𝐶)𝑟))
24 euex 2631 . . . . . . 7 (∃! ∈ (𝑍(Hom ‘𝐶)𝑟) → ∃ ∈ (𝑍(Hom ‘𝐶)𝑟))
2523, 24nsyl 135 . . . . . 6 (((𝜑𝑟 ∈ (Base‘𝐶)) ∧ 𝑟 ∈ NzRing) → ¬ ∃! ∈ (𝑍(Hom ‘𝐶)𝑟))
2625ex 449 . . . . 5 ((𝜑𝑟 ∈ (Base‘𝐶)) → (𝑟 ∈ NzRing → ¬ ∃! ∈ (𝑍(Hom ‘𝐶)𝑟)))
2726reximdva 3155 . . . 4 (𝜑 → (∃𝑟 ∈ (Base‘𝐶)𝑟 ∈ NzRing → ∃𝑟 ∈ (Base‘𝐶) ¬ ∃! ∈ (𝑍(Hom ‘𝐶)𝑟)))
281, 27mpd 15 . . 3 (𝜑 → ∃𝑟 ∈ (Base‘𝐶) ¬ ∃! ∈ (𝑍(Hom ‘𝐶)𝑟))
29 rexnal 3133 . . 3 (∃𝑟 ∈ (Base‘𝐶) ¬ ∃! ∈ (𝑍(Hom ‘𝐶)𝑟) ↔ ¬ ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑍(Hom ‘𝐶)𝑟))
3028, 29sylib 208 . 2 (𝜑 → ¬ ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑍(Hom ‘𝐶)𝑟))
31 df-nel 3036 . . 3 (𝑍 ∉ (InitO‘𝐶) ↔ ¬ 𝑍 ∈ (InitO‘𝐶))
322ringccat 42552 . . . . . 6 (𝑈𝑉𝐶 ∈ Cat)
334, 32syl 17 . . . . 5 (𝜑𝐶 ∈ Cat)
343, 6, 33, 12isinito 16871 . . . 4 (𝜑 → (𝑍 ∈ (InitO‘𝐶) ↔ ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑍(Hom ‘𝐶)𝑟)))
3534notbid 307 . . 3 (𝜑 → (¬ 𝑍 ∈ (InitO‘𝐶) ↔ ¬ ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑍(Hom ‘𝐶)𝑟)))
3631, 35syl5bb 272 . 2 (𝜑 → (𝑍 ∉ (InitO‘𝐶) ↔ ¬ ∀𝑟 ∈ (Base‘𝐶)∃! ∈ (𝑍(Hom ‘𝐶)𝑟)))
3730, 36mpbird 247 1 (𝜑𝑍 ∉ (InitO‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wal 1630   = wceq 1632  wex 1853  wcel 2139  ∃!weu 2607  wnel 3035  wral 3050  wrex 3051  cdif 3712  cin 3714  c0 4058  cfv 6049  (class class class)co 6814  Basecbs 16079  Hom chom 16174  Catccat 16546  InitOcinito 16859  Ringcrg 18767   RingHom crh 18934  NzRingcnzr 19479  RingCatcringc 42531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-xnn0 11576  df-z 11590  df-dec 11706  df-uz 11900  df-fz 12540  df-hash 13332  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-hom 16188  df-cco 16189  df-0g 16324  df-cat 16550  df-cid 16551  df-homf 16552  df-ssc 16691  df-resc 16692  df-subc 16693  df-inito 16862  df-estrc 16984  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-grp 17646  df-minusg 17647  df-ghm 17879  df-mgp 18710  df-ur 18722  df-ring 18769  df-rnghom 18937  df-nzr 19480  df-ringc 42533
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator