Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringndrg Structured version   Visualization version   GIF version

Theorem zringndrg 19886
 Description: The integers are not a division ring, and therefore not a field. (Contributed by AV, 22-Oct-2021.)
Assertion
Ref Expression
zringndrg ring ∉ DivRing

Proof of Theorem zringndrg
StepHypRef Expression
1 1ne2 11278 . . . . . . 7 1 ≠ 2
21nesymi 2880 . . . . . 6 ¬ 2 = 1
3 2re 11128 . . . . . . . 8 2 ∈ ℝ
4 0le2 11149 . . . . . . . 8 0 ≤ 2
5 absid 14080 . . . . . . . 8 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
63, 4, 5mp2an 708 . . . . . . 7 (abs‘2) = 2
76eqeq1i 2656 . . . . . 6 ((abs‘2) = 1 ↔ 2 = 1)
82, 7mtbir 312 . . . . 5 ¬ (abs‘2) = 1
98intnan 980 . . . 4 ¬ (2 ∈ ℤ ∧ (abs‘2) = 1)
10 zringunit 19884 . . . 4 (2 ∈ (Unit‘ℤring) ↔ (2 ∈ ℤ ∧ (abs‘2) = 1))
119, 10mtbir 312 . . 3 ¬ 2 ∈ (Unit‘ℤring)
12 zringbas 19872 . . . . 5 ℤ = (Base‘ℤring)
13 eqid 2651 . . . . 5 (Unit‘ℤring) = (Unit‘ℤring)
14 zring0 19876 . . . . 5 0 = (0g‘ℤring)
1512, 13, 14isdrng 18799 . . . 4 (ℤring ∈ DivRing ↔ (ℤring ∈ Ring ∧ (Unit‘ℤring) = (ℤ ∖ {0})))
16 2z 11447 . . . . . 6 2 ∈ ℤ
17 2ne0 11151 . . . . . 6 2 ≠ 0
18 eldifsn 4350 . . . . . 6 (2 ∈ (ℤ ∖ {0}) ↔ (2 ∈ ℤ ∧ 2 ≠ 0))
1916, 17, 18mpbir2an 975 . . . . 5 2 ∈ (ℤ ∖ {0})
20 id 22 . . . . 5 ((Unit‘ℤring) = (ℤ ∖ {0}) → (Unit‘ℤring) = (ℤ ∖ {0}))
2119, 20syl5eleqr 2737 . . . 4 ((Unit‘ℤring) = (ℤ ∖ {0}) → 2 ∈ (Unit‘ℤring))
2215, 21simplbiim 659 . . 3 (ℤring ∈ DivRing → 2 ∈ (Unit‘ℤring))
2311, 22mto 188 . 2 ¬ ℤring ∈ DivRing
2423nelir 2929 1 ring ∉ DivRing
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823   ∉ wnel 2926   ∖ cdif 3604  {csn 4210   class class class wbr 4685  ‘cfv 5926  ℝcr 9973  0cc0 9974  1c1 9975   ≤ cle 10113  2c2 11108  ℤcz 11415  abscabs 14018  Ringcrg 18593  Unitcui 18685  DivRingcdr 18795  ℤringzring 19866 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-gz 15681  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-subg 17638  df-cmn 18241  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-drng 18797  df-subrg 18826  df-cnfld 19795  df-zring 19867 This theorem is referenced by:  zclmncvs  22994
 Copyright terms: Public domain W3C validator