MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringlpirlem3 Structured version   Visualization version   GIF version

Theorem zringlpirlem3 19882
Description: Lemma for zringlpir 19885. All elements of a nonzero ideal of integers are divided by the least one. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.)
Hypotheses
Ref Expression
zringlpirlem.i (𝜑𝐼 ∈ (LIdeal‘ℤring))
zringlpirlem.n0 (𝜑𝐼 ≠ {0})
zringlpirlem.g 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < )
zringlpirlem.x (𝜑𝑋𝐼)
Assertion
Ref Expression
zringlpirlem3 (𝜑𝐺𝑋)

Proof of Theorem zringlpirlem3
StepHypRef Expression
1 zringlpirlem.i . . . . . . . . 9 (𝜑𝐼 ∈ (LIdeal‘ℤring))
2 zringbas 19872 . . . . . . . . . 10 ℤ = (Base‘ℤring)
3 eqid 2651 . . . . . . . . . 10 (LIdeal‘ℤring) = (LIdeal‘ℤring)
42, 3lidlss 19258 . . . . . . . . 9 (𝐼 ∈ (LIdeal‘ℤring) → 𝐼 ⊆ ℤ)
51, 4syl 17 . . . . . . . 8 (𝜑𝐼 ⊆ ℤ)
6 zringlpirlem.x . . . . . . . 8 (𝜑𝑋𝐼)
75, 6sseldd 3637 . . . . . . 7 (𝜑𝑋 ∈ ℤ)
87zred 11520 . . . . . 6 (𝜑𝑋 ∈ ℝ)
9 inss2 3867 . . . . . . . 8 (𝐼 ∩ ℕ) ⊆ ℕ
10 zringlpirlem.g . . . . . . . . 9 𝐺 = inf((𝐼 ∩ ℕ), ℝ, < )
11 nnuz 11761 . . . . . . . . . . 11 ℕ = (ℤ‘1)
129, 11sseqtri 3670 . . . . . . . . . 10 (𝐼 ∩ ℕ) ⊆ (ℤ‘1)
13 zringlpirlem.n0 . . . . . . . . . . 11 (𝜑𝐼 ≠ {0})
141, 13zringlpirlem1 19880 . . . . . . . . . 10 (𝜑 → (𝐼 ∩ ℕ) ≠ ∅)
15 infssuzcl 11810 . . . . . . . . . 10 (((𝐼 ∩ ℕ) ⊆ (ℤ‘1) ∧ (𝐼 ∩ ℕ) ≠ ∅) → inf((𝐼 ∩ ℕ), ℝ, < ) ∈ (𝐼 ∩ ℕ))
1612, 14, 15sylancr 696 . . . . . . . . 9 (𝜑 → inf((𝐼 ∩ ℕ), ℝ, < ) ∈ (𝐼 ∩ ℕ))
1710, 16syl5eqel 2734 . . . . . . . 8 (𝜑𝐺 ∈ (𝐼 ∩ ℕ))
189, 17sseldi 3634 . . . . . . 7 (𝜑𝐺 ∈ ℕ)
1918nnrpd 11908 . . . . . 6 (𝜑𝐺 ∈ ℝ+)
20 modlt 12719 . . . . . 6 ((𝑋 ∈ ℝ ∧ 𝐺 ∈ ℝ+) → (𝑋 mod 𝐺) < 𝐺)
218, 19, 20syl2anc 694 . . . . 5 (𝜑 → (𝑋 mod 𝐺) < 𝐺)
227, 18zmodcld 12731 . . . . . . 7 (𝜑 → (𝑋 mod 𝐺) ∈ ℕ0)
2322nn0red 11390 . . . . . 6 (𝜑 → (𝑋 mod 𝐺) ∈ ℝ)
2418nnred 11073 . . . . . 6 (𝜑𝐺 ∈ ℝ)
2523, 24ltnled 10222 . . . . 5 (𝜑 → ((𝑋 mod 𝐺) < 𝐺 ↔ ¬ 𝐺 ≤ (𝑋 mod 𝐺)))
2621, 25mpbid 222 . . . 4 (𝜑 → ¬ 𝐺 ≤ (𝑋 mod 𝐺))
277zcnd 11521 . . . . . . . . . . 11 (𝜑𝑋 ∈ ℂ)
2818nncnd 11074 . . . . . . . . . . . 12 (𝜑𝐺 ∈ ℂ)
298, 18nndivred 11107 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 / 𝐺) ∈ ℝ)
3029flcld 12639 . . . . . . . . . . . . 13 (𝜑 → (⌊‘(𝑋 / 𝐺)) ∈ ℤ)
3130zcnd 11521 . . . . . . . . . . . 12 (𝜑 → (⌊‘(𝑋 / 𝐺)) ∈ ℂ)
3228, 31mulcld 10098 . . . . . . . . . . 11 (𝜑 → (𝐺 · (⌊‘(𝑋 / 𝐺))) ∈ ℂ)
3327, 32negsubd 10436 . . . . . . . . . 10 (𝜑 → (𝑋 + -(𝐺 · (⌊‘(𝑋 / 𝐺)))) = (𝑋 − (𝐺 · (⌊‘(𝑋 / 𝐺)))))
3430znegcld 11522 . . . . . . . . . . . . . 14 (𝜑 → -(⌊‘(𝑋 / 𝐺)) ∈ ℤ)
3534zcnd 11521 . . . . . . . . . . . . 13 (𝜑 → -(⌊‘(𝑋 / 𝐺)) ∈ ℂ)
3635, 28mulcomd 10099 . . . . . . . . . . . 12 (𝜑 → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) = (𝐺 · -(⌊‘(𝑋 / 𝐺))))
3728, 31mulneg2d 10522 . . . . . . . . . . . 12 (𝜑 → (𝐺 · -(⌊‘(𝑋 / 𝐺))) = -(𝐺 · (⌊‘(𝑋 / 𝐺))))
3836, 37eqtrd 2685 . . . . . . . . . . 11 (𝜑 → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) = -(𝐺 · (⌊‘(𝑋 / 𝐺))))
3938oveq2d 6706 . . . . . . . . . 10 (𝜑 → (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)) = (𝑋 + -(𝐺 · (⌊‘(𝑋 / 𝐺)))))
40 modval 12710 . . . . . . . . . . 11 ((𝑋 ∈ ℝ ∧ 𝐺 ∈ ℝ+) → (𝑋 mod 𝐺) = (𝑋 − (𝐺 · (⌊‘(𝑋 / 𝐺)))))
418, 19, 40syl2anc 694 . . . . . . . . . 10 (𝜑 → (𝑋 mod 𝐺) = (𝑋 − (𝐺 · (⌊‘(𝑋 / 𝐺)))))
4233, 39, 413eqtr4rd 2696 . . . . . . . . 9 (𝜑 → (𝑋 mod 𝐺) = (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)))
43 zringring 19869 . . . . . . . . . . 11 ring ∈ Ring
4443a1i 11 . . . . . . . . . 10 (𝜑 → ℤring ∈ Ring)
451, 13, 10zringlpirlem2 19881 . . . . . . . . . . 11 (𝜑𝐺𝐼)
46 zringmulr 19875 . . . . . . . . . . . 12 · = (.r‘ℤring)
473, 2, 46lidlmcl 19265 . . . . . . . . . . 11 (((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring)) ∧ (-(⌊‘(𝑋 / 𝐺)) ∈ ℤ ∧ 𝐺𝐼)) → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) ∈ 𝐼)
4844, 1, 34, 45, 47syl22anc 1367 . . . . . . . . . 10 (𝜑 → (-(⌊‘(𝑋 / 𝐺)) · 𝐺) ∈ 𝐼)
49 zringplusg 19873 . . . . . . . . . . 11 + = (+g‘ℤring)
503, 49lidlacl 19261 . . . . . . . . . 10 (((ℤring ∈ Ring ∧ 𝐼 ∈ (LIdeal‘ℤring)) ∧ (𝑋𝐼 ∧ (-(⌊‘(𝑋 / 𝐺)) · 𝐺) ∈ 𝐼)) → (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)) ∈ 𝐼)
5144, 1, 6, 48, 50syl22anc 1367 . . . . . . . . 9 (𝜑 → (𝑋 + (-(⌊‘(𝑋 / 𝐺)) · 𝐺)) ∈ 𝐼)
5242, 51eqeltrd 2730 . . . . . . . 8 (𝜑 → (𝑋 mod 𝐺) ∈ 𝐼)
5352adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → (𝑋 mod 𝐺) ∈ 𝐼)
54 simpr 476 . . . . . . 7 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → (𝑋 mod 𝐺) ∈ ℕ)
5553, 54elind 3831 . . . . . 6 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → (𝑋 mod 𝐺) ∈ (𝐼 ∩ ℕ))
56 infssuzle 11809 . . . . . 6 (((𝐼 ∩ ℕ) ⊆ (ℤ‘1) ∧ (𝑋 mod 𝐺) ∈ (𝐼 ∩ ℕ)) → inf((𝐼 ∩ ℕ), ℝ, < ) ≤ (𝑋 mod 𝐺))
5712, 55, 56sylancr 696 . . . . 5 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → inf((𝐼 ∩ ℕ), ℝ, < ) ≤ (𝑋 mod 𝐺))
5810, 57syl5eqbr 4720 . . . 4 ((𝜑 ∧ (𝑋 mod 𝐺) ∈ ℕ) → 𝐺 ≤ (𝑋 mod 𝐺))
5926, 58mtand 692 . . 3 (𝜑 → ¬ (𝑋 mod 𝐺) ∈ ℕ)
60 elnn0 11332 . . . 4 ((𝑋 mod 𝐺) ∈ ℕ0 ↔ ((𝑋 mod 𝐺) ∈ ℕ ∨ (𝑋 mod 𝐺) = 0))
6122, 60sylib 208 . . 3 (𝜑 → ((𝑋 mod 𝐺) ∈ ℕ ∨ (𝑋 mod 𝐺) = 0))
62 orel1 396 . . 3 (¬ (𝑋 mod 𝐺) ∈ ℕ → (((𝑋 mod 𝐺) ∈ ℕ ∨ (𝑋 mod 𝐺) = 0) → (𝑋 mod 𝐺) = 0))
6359, 61, 62sylc 65 . 2 (𝜑 → (𝑋 mod 𝐺) = 0)
64 dvdsval3 15031 . . 3 ((𝐺 ∈ ℕ ∧ 𝑋 ∈ ℤ) → (𝐺𝑋 ↔ (𝑋 mod 𝐺) = 0))
6518, 7, 64syl2anc 694 . 2 (𝜑 → (𝐺𝑋 ↔ (𝑋 mod 𝐺) = 0))
6663, 65mpbird 247 1 (𝜑𝐺𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823  cin 3606  wss 3607  c0 3948  {csn 4210   class class class wbr 4685  cfv 5926  (class class class)co 6690  infcinf 8388  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cle 10113  cmin 10304  -cneg 10305   / cdiv 10722  cn 11058  0cn0 11330  cz 11415  cuz 11725  +crp 11870  cfl 12631   mod cmo 12708  cdvds 15027  Ringcrg 18593  LIdealclidl 19218  ringzring 19866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-fz 12365  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-cmn 18241  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-subrg 18826  df-lmod 18913  df-lss 18981  df-sra 19220  df-rgmod 19221  df-lidl 19222  df-cnfld 19795  df-zring 19867
This theorem is referenced by:  zringlpir  19885
  Copyright terms: Public domain W3C validator