MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringlpir Structured version   Visualization version   GIF version

Theorem zringlpir 19885
Description: The integers are a principal ideal ring. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by AV, 9-Jun-2019.) (Proof shortened by AV, 27-Sep-2020.)
Assertion
Ref Expression
zringlpir ring ∈ LPIR

Proof of Theorem zringlpir
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringring 19869 . 2 ring ∈ Ring
2 eleq1 2718 . . . 4 (𝑥 = {0} → (𝑥 ∈ (LPIdeal‘ℤring) ↔ {0} ∈ (LPIdeal‘ℤring)))
3 simpl 472 . . . . . . 7 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ∈ (LIdeal‘ℤring))
4 simpr 476 . . . . . . 7 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ≠ {0})
5 eqid 2651 . . . . . . 7 inf((𝑥 ∩ ℕ), ℝ, < ) = inf((𝑥 ∩ ℕ), ℝ, < )
63, 4, 5zringlpirlem2 19881 . . . . . 6 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → inf((𝑥 ∩ ℕ), ℝ, < ) ∈ 𝑥)
7 simpll 805 . . . . . . . 8 (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧𝑥) → 𝑥 ∈ (LIdeal‘ℤring))
8 simplr 807 . . . . . . . 8 (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧𝑥) → 𝑥 ≠ {0})
9 simpr 476 . . . . . . . 8 (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧𝑥) → 𝑧𝑥)
107, 8, 5, 9zringlpirlem3 19882 . . . . . . 7 (((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) ∧ 𝑧𝑥) → inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧)
1110ralrimiva 2995 . . . . . 6 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → ∀𝑧𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧)
12 breq1 4688 . . . . . . . 8 (𝑦 = inf((𝑥 ∩ ℕ), ℝ, < ) → (𝑦𝑧 ↔ inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧))
1312ralbidv 3015 . . . . . . 7 (𝑦 = inf((𝑥 ∩ ℕ), ℝ, < ) → (∀𝑧𝑥 𝑦𝑧 ↔ ∀𝑧𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧))
1413rspcev 3340 . . . . . 6 ((inf((𝑥 ∩ ℕ), ℝ, < ) ∈ 𝑥 ∧ ∀𝑧𝑥 inf((𝑥 ∩ ℕ), ℝ, < ) ∥ 𝑧) → ∃𝑦𝑥𝑧𝑥 𝑦𝑧)
156, 11, 14syl2anc 694 . . . . 5 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → ∃𝑦𝑥𝑧𝑥 𝑦𝑧)
16 eqid 2651 . . . . . . . 8 (LIdeal‘ℤring) = (LIdeal‘ℤring)
17 eqid 2651 . . . . . . . 8 (LPIdeal‘ℤring) = (LPIdeal‘ℤring)
18 dvdsrzring 19879 . . . . . . . 8 ∥ = (∥r‘ℤring)
1916, 17, 18lpigen 19304 . . . . . . 7 ((ℤring ∈ Ring ∧ 𝑥 ∈ (LIdeal‘ℤring)) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦𝑥𝑧𝑥 𝑦𝑧))
201, 19mpan 706 . . . . . 6 (𝑥 ∈ (LIdeal‘ℤring) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦𝑥𝑧𝑥 𝑦𝑧))
2120adantr 480 . . . . 5 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → (𝑥 ∈ (LPIdeal‘ℤring) ↔ ∃𝑦𝑥𝑧𝑥 𝑦𝑧))
2215, 21mpbird 247 . . . 4 ((𝑥 ∈ (LIdeal‘ℤring) ∧ 𝑥 ≠ {0}) → 𝑥 ∈ (LPIdeal‘ℤring))
23 zring0 19876 . . . . . 6 0 = (0g‘ℤring)
2417, 23lpi0 19295 . . . . 5 (ℤring ∈ Ring → {0} ∈ (LPIdeal‘ℤring))
251, 24mp1i 13 . . . 4 (𝑥 ∈ (LIdeal‘ℤring) → {0} ∈ (LPIdeal‘ℤring))
262, 22, 25pm2.61ne 2908 . . 3 (𝑥 ∈ (LIdeal‘ℤring) → 𝑥 ∈ (LPIdeal‘ℤring))
2726ssriv 3640 . 2 (LIdeal‘ℤring) ⊆ (LPIdeal‘ℤring)
2817, 16islpir2 19299 . 2 (ℤring ∈ LPIR ↔ (ℤring ∈ Ring ∧ (LIdeal‘ℤring) ⊆ (LPIdeal‘ℤring)))
291, 27, 28mpbir2an 975 1 ring ∈ LPIR
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  cin 3606  wss 3607  {csn 4210   class class class wbr 4685  cfv 5926  infcinf 8388  cr 9973  0cc0 9974   < clt 10112  cn 11058  cdvds 15027  Ringcrg 18593  LIdealclidl 19218  LPIdealclpidl 19289  LPIRclpir 19290  ringzring 19866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-fz 12365  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-dvds 15028  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-sbg 17474  df-subg 17638  df-cmn 18241  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-dvdsr 18687  df-subrg 18826  df-lmod 18913  df-lss 18981  df-lsp 19020  df-sra 19220  df-rgmod 19221  df-lidl 19222  df-rsp 19223  df-lpidl 19291  df-lpir 19292  df-cnfld 19795  df-zring 19867
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator