Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zringcyg Structured version   Visualization version   GIF version

Theorem zringcyg 19887
 Description: The integers are a cyclic group. (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 9-Jun-2019.)
Assertion
Ref Expression
zringcyg ring ∈ CycGrp

Proof of Theorem zringcyg
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringbas 19872 . . 3 ℤ = (Base‘ℤring)
2 eqid 2651 . . 3 (.g‘ℤring) = (.g‘ℤring)
3 zsubrg 19847 . . . . 5 ℤ ∈ (SubRing‘ℂfld)
4 subrgsubg 18834 . . . . 5 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
53, 4ax-mp 5 . . . 4 ℤ ∈ (SubGrp‘ℂfld)
6 df-zring 19867 . . . . 5 ring = (ℂflds ℤ)
76subggrp 17644 . . . 4 (ℤ ∈ (SubGrp‘ℂfld) → ℤring ∈ Grp)
85, 7mp1i 13 . . 3 (⊤ → ℤring ∈ Grp)
9 1zzd 11446 . . 3 (⊤ → 1 ∈ ℤ)
10 ax-1cn 10032 . . . . . . 7 1 ∈ ℂ
11 cnfldmulg 19826 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑥(.g‘ℂfld)1) = (𝑥 · 1))
1210, 11mpan2 707 . . . . . 6 (𝑥 ∈ ℤ → (𝑥(.g‘ℂfld)1) = (𝑥 · 1))
13 1z 11445 . . . . . . 7 1 ∈ ℤ
14 eqid 2651 . . . . . . . 8 (.g‘ℂfld) = (.g‘ℂfld)
1514, 6, 2subgmulg 17655 . . . . . . 7 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝑥 ∈ ℤ ∧ 1 ∈ ℤ) → (𝑥(.g‘ℂfld)1) = (𝑥(.g‘ℤring)1))
165, 13, 15mp3an13 1455 . . . . . 6 (𝑥 ∈ ℤ → (𝑥(.g‘ℂfld)1) = (𝑥(.g‘ℤring)1))
17 zcn 11420 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
1817mulid1d 10095 . . . . . 6 (𝑥 ∈ ℤ → (𝑥 · 1) = 𝑥)
1912, 16, 183eqtr3rd 2694 . . . . 5 (𝑥 ∈ ℤ → 𝑥 = (𝑥(.g‘ℤring)1))
20 oveq1 6697 . . . . . . 7 (𝑧 = 𝑥 → (𝑧(.g‘ℤring)1) = (𝑥(.g‘ℤring)1))
2120eqeq2d 2661 . . . . . 6 (𝑧 = 𝑥 → (𝑥 = (𝑧(.g‘ℤring)1) ↔ 𝑥 = (𝑥(.g‘ℤring)1)))
2221rspcev 3340 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑥 = (𝑥(.g‘ℤring)1)) → ∃𝑧 ∈ ℤ 𝑥 = (𝑧(.g‘ℤring)1))
2319, 22mpdan 703 . . . 4 (𝑥 ∈ ℤ → ∃𝑧 ∈ ℤ 𝑥 = (𝑧(.g‘ℤring)1))
2423adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℤ) → ∃𝑧 ∈ ℤ 𝑥 = (𝑧(.g‘ℤring)1))
251, 2, 8, 9, 24iscygd 18335 . 2 (⊤ → ℤring ∈ CycGrp)
2625trud 1533 1 ring ∈ CycGrp
 Colors of variables: wff setvar class Syntax hints:   = wceq 1523  ⊤wtru 1524   ∈ wcel 2030  ∃wrex 2942  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  1c1 9975   · cmul 9979  ℤcz 11415  Grpcgrp 17469  .gcmg 17587  SubGrpcsubg 17635  CycGrpccyg 18325  SubRingcsubrg 18824  ℂfldccnfld 19794  ℤringzring 19866 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-seq 12842  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-0g 16149  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-mulg 17588  df-subg 17638  df-cmn 18241  df-cyg 18326  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-subrg 18826  df-cnfld 19795  df-zring 19867 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator