![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zringbas | Structured version Visualization version GIF version |
Description: The integers are the base of the ring of integers. (Contributed by Thierry Arnoux, 31-Oct-2017.) (Revised by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
zringbas | ⊢ ℤ = (Base‘ℤring) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsscn 11423 | . 2 ⊢ ℤ ⊆ ℂ | |
2 | df-zring 19867 | . . 3 ⊢ ℤring = (ℂfld ↾s ℤ) | |
3 | cnfldbas 19798 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
4 | 2, 3 | ressbas2 15978 | . 2 ⊢ (ℤ ⊆ ℂ → ℤ = (Base‘ℤring)) |
5 | 1, 4 | ax-mp 5 | 1 ⊢ ℤ = (Base‘ℤring) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1523 ⊆ wss 3607 ‘cfv 5926 ℂcc 9972 ℤcz 11415 Basecbs 15904 ℂfldccnfld 19794 ℤringzring 19866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-cnfld 19795 df-zring 19867 |
This theorem is referenced by: dvdsrzring 19879 zringlpirlem1 19880 zringlpirlem3 19882 zringinvg 19883 zringunit 19884 zringndrg 19886 zringcyg 19887 prmirredlem 19889 prmirred 19891 expghm 19892 mulgghm2 19893 mulgrhm 19894 mulgrhm2 19895 zlmlmod 19919 zlmassa 19920 chrrhm 19927 domnchr 19928 znlidl 19929 znbas 19940 znzrh2 19942 znzrhfo 19944 zndvds 19946 znf1o 19948 zzngim 19949 znfld 19957 znidomb 19958 znunit 19960 znrrg 19962 cygznlem3 19966 frgpcyg 19970 zrhpsgnodpm 19986 dchrzrhmul 25016 lgsqrlem1 25116 lgsqrlem2 25117 lgsqrlem3 25118 lgsdchr 25125 lgseisenlem3 25147 lgseisenlem4 25148 dchrisum0flblem1 25242 mdetpmtr1 30017 mdetpmtr12 30019 mdetlap 30026 nmmulg 30140 cnzh 30142 rezh 30143 zrhf1ker 30147 zrhunitpreima 30150 elzrhunit 30151 qqhval2lem 30153 qqhf 30158 qqhghm 30160 qqhrhm 30161 qqhnm 30162 mzpmfp 37627 2zlidl 42259 zlmodzxzel 42458 zlmodzxzscm 42460 linevalexample 42509 zlmodzxzldeplem3 42616 zlmodzxzldep 42618 ldepsnlinclem1 42619 ldepsnlinclem2 42620 |
Copyright terms: Public domain | W3C validator |