Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhpsgnodpm Structured version   Visualization version   GIF version

Theorem zrhpsgnodpm 20140
 Description: The sign of an odd permutation embedded into a ring is the additive inverse of the multiplicative neutral element of the ring. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
zrhpsgnevpm.y 𝑌 = (ℤRHom‘𝑅)
zrhpsgnevpm.s 𝑆 = (pmSgn‘𝑁)
zrhpsgnevpm.o 1 = (1r𝑅)
zrhpsgnodpm.p 𝑃 = (Base‘(SymGrp‘𝑁))
zrhpsgnodpm.i 𝐼 = (invg𝑅)
Assertion
Ref Expression
zrhpsgnodpm ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌𝑆)‘𝐹) = (𝐼1 ))

Proof of Theorem zrhpsgnodpm
StepHypRef Expression
1 eqid 2760 . . . . . 6 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2 zrhpsgnevpm.s . . . . . 6 𝑆 = (pmSgn‘𝑁)
3 eqid 2760 . . . . . 6 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
41, 2, 3psgnghm2 20129 . . . . 5 (𝑁 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
5 zrhpsgnodpm.p . . . . . 6 𝑃 = (Base‘(SymGrp‘𝑁))
6 eqid 2760 . . . . . 6 (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
75, 6ghmf 17865 . . . . 5 (𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
84, 7syl 17 . . . 4 (𝑁 ∈ Fin → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
983ad2ant2 1129 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
10 eldifi 3875 . . . 4 (𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁)) → 𝐹𝑃)
11103ad2ant3 1130 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → 𝐹𝑃)
12 fvco3 6437 . . 3 ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
139, 11, 12syl2anc 696 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
141, 5, 2psgnodpm 20136 . . . 4 ((𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑆𝐹) = -1)
15143adant1 1125 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑆𝐹) = -1)
1615fveq2d 6356 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑌‘(𝑆𝐹)) = (𝑌‘-1))
17 zrhpsgnevpm.y . . . . . . 7 𝑌 = (ℤRHom‘𝑅)
1817zrhrhm 20062 . . . . . 6 (𝑅 ∈ Ring → 𝑌 ∈ (ℤring RingHom 𝑅))
19 rhmghm 18927 . . . . . 6 (𝑌 ∈ (ℤring RingHom 𝑅) → 𝑌 ∈ (ℤring GrpHom 𝑅))
2018, 19syl 17 . . . . 5 (𝑅 ∈ Ring → 𝑌 ∈ (ℤring GrpHom 𝑅))
21 1z 11599 . . . . . 6 1 ∈ ℤ
2221a1i 11 . . . . 5 (𝑅 ∈ Ring → 1 ∈ ℤ)
23 zringbas 20026 . . . . . 6 ℤ = (Base‘ℤring)
24 eqid 2760 . . . . . 6 (invg‘ℤring) = (invg‘ℤring)
25 zrhpsgnodpm.i . . . . . 6 𝐼 = (invg𝑅)
2623, 24, 25ghminv 17868 . . . . 5 ((𝑌 ∈ (ℤring GrpHom 𝑅) ∧ 1 ∈ ℤ) → (𝑌‘((invg‘ℤring)‘1)) = (𝐼‘(𝑌‘1)))
2720, 22, 26syl2anc 696 . . . 4 (𝑅 ∈ Ring → (𝑌‘((invg‘ℤring)‘1)) = (𝐼‘(𝑌‘1)))
28 zringinvg 20037 . . . . . . . 8 (1 ∈ ℤ → -1 = ((invg‘ℤring)‘1))
2921, 28ax-mp 5 . . . . . . 7 -1 = ((invg‘ℤring)‘1)
3029eqcomi 2769 . . . . . 6 ((invg‘ℤring)‘1) = -1
3130fveq2i 6355 . . . . 5 (𝑌‘((invg‘ℤring)‘1)) = (𝑌‘-1)
3231a1i 11 . . . 4 (𝑅 ∈ Ring → (𝑌‘((invg‘ℤring)‘1)) = (𝑌‘-1))
33 zrhpsgnevpm.o . . . . . 6 1 = (1r𝑅)
3417, 33zrh1 20063 . . . . 5 (𝑅 ∈ Ring → (𝑌‘1) = 1 )
3534fveq2d 6356 . . . 4 (𝑅 ∈ Ring → (𝐼‘(𝑌‘1)) = (𝐼1 ))
3627, 32, 353eqtr3d 2802 . . 3 (𝑅 ∈ Ring → (𝑌‘-1) = (𝐼1 ))
37363ad2ant1 1128 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → (𝑌‘-1) = (𝐼1 ))
3813, 16, 373eqtrd 2798 1 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝑁))) → ((𝑌𝑆)‘𝐹) = (𝐼1 ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ∖ cdif 3712  {cpr 4323   ∘ ccom 5270  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813  Fincfn 8121  1c1 10129  -cneg 10459  ℤcz 11569  Basecbs 16059   ↾s cress 16060  invgcminusg 17624   GrpHom cghm 17858  SymGrpcsymg 17997  pmSgncpsgn 18109  pmEvencevpm 18110  mulGrpcmgp 18689  1rcur 18701  Ringcrg 18747   RingHom crh 18914  ℂfldccnfld 19948  ℤringzring 20020  ℤRHomczrh 20050 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-addf 10207  ax-mulf 10208 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-xor 1614  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-xnn0 11556  df-z 11570  df-dec 11686  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-word 13485  df-lsw 13486  df-concat 13487  df-s1 13488  df-substr 13489  df-splice 13490  df-reverse 13491  df-s2 13793  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-0g 16304  df-gsum 16305  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-mulg 17742  df-subg 17792  df-ghm 17859  df-gim 17902  df-oppg 17976  df-symg 17998  df-pmtr 18062  df-psgn 18111  df-evpm 18112  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-rnghom 18917  df-drng 18951  df-subrg 18980  df-cnfld 19949  df-zring 20021  df-zrh 20054 This theorem is referenced by:  mdetralt  20616  mdetunilem7  20626
 Copyright terms: Public domain W3C validator