MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhpsgnmhm Structured version   Visualization version   GIF version

Theorem zrhpsgnmhm 20053
Description: Embedding of permutation signs into an arbitrary ring is a homomorphism. (Contributed by SO, 9-Jul-2018.)
Assertion
Ref Expression
zrhpsgnmhm ((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅)))

Proof of Theorem zrhpsgnmhm
StepHypRef Expression
1 eqid 2724 . . . 4 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
21zrhrhm 19983 . . 3 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅))
3 eqid 2724 . . . 4 (mulGrp‘ℤring) = (mulGrp‘ℤring)
4 eqid 2724 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
53, 4rhmmhm 18845 . . 3 ((ℤRHom‘𝑅) ∈ (ℤring RingHom 𝑅) → (ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅)))
62, 5syl 17 . 2 (𝑅 ∈ Ring → (ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅)))
7 eqid 2724 . . . . 5 (SymGrp‘𝐴) = (SymGrp‘𝐴)
8 eqid 2724 . . . . 5 (pmSgn‘𝐴) = (pmSgn‘𝐴)
9 eqid 2724 . . . . 5 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
107, 8, 9psgnghm2 20050 . . . 4 (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
11 ghmmhm 17792 . . . 4 ((pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1})))
1210, 11syl 17 . . 3 (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1})))
13 eqid 2724 . . . . . . . 8 ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})) = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
1413cnmsgnsubg 20046 . . . . . . 7 {1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
15 subgsubm 17738 . . . . . . 7 ({1, -1} ∈ (SubGrp‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) → {1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))))
1614, 15ax-mp 5 . . . . . 6 {1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0})))
17 cnring 19891 . . . . . . 7 fld ∈ Ring
18 cnfldbas 19873 . . . . . . . . 9 ℂ = (Base‘ℂfld)
19 cnfld0 19893 . . . . . . . . 9 0 = (0g‘ℂfld)
20 cndrng 19898 . . . . . . . . 9 fld ∈ DivRing
2118, 19, 20drngui 18876 . . . . . . . 8 (ℂ ∖ {0}) = (Unit‘ℂfld)
22 eqid 2724 . . . . . . . 8 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2321, 22unitsubm 18791 . . . . . . 7 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
2413subsubm 17479 . . . . . . 7 ((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) → ({1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0}))))
2517, 23, 24mp2b 10 . . . . . 6 ({1, -1} ∈ (SubMnd‘((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0})))
2616, 25mpbi 220 . . . . 5 ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ (ℂ ∖ {0}))
2726simpli 476 . . . 4 {1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld))
28 1z 11520 . . . . 5 1 ∈ ℤ
29 neg1z 11526 . . . . 5 -1 ∈ ℤ
30 prssi 4461 . . . . 5 ((1 ∈ ℤ ∧ -1 ∈ ℤ) → {1, -1} ⊆ ℤ)
3128, 29, 30mp2an 710 . . . 4 {1, -1} ⊆ ℤ
32 zsubrg 19922 . . . . 5 ℤ ∈ (SubRing‘ℂfld)
3322subrgsubm 18916 . . . . 5 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)))
34 zringmpg 19963 . . . . . . 7 ((mulGrp‘ℂfld) ↾s ℤ) = (mulGrp‘ℤring)
3534eqcomi 2733 . . . . . 6 (mulGrp‘ℤring) = ((mulGrp‘ℂfld) ↾s ℤ)
3635subsubm 17479 . . . . 5 (ℤ ∈ (SubMnd‘(mulGrp‘ℂfld)) → ({1, -1} ∈ (SubMnd‘(mulGrp‘ℤring)) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ ℤ)))
3732, 33, 36mp2b 10 . . . 4 ({1, -1} ∈ (SubMnd‘(mulGrp‘ℤring)) ↔ ({1, -1} ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ {1, -1} ⊆ ℤ))
3827, 31, 37mpbir2an 993 . . 3 {1, -1} ∈ (SubMnd‘(mulGrp‘ℤring))
39 zex 11499 . . . . . 6 ℤ ∈ V
40 ressabs 16062 . . . . . 6 ((ℤ ∈ V ∧ {1, -1} ⊆ ℤ) → (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}))
4139, 31, 40mp2an 710 . . . . 5 (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
4234oveq1i 6775 . . . . 5 (((mulGrp‘ℂfld) ↾s ℤ) ↾s {1, -1}) = ((mulGrp‘ℤring) ↾s {1, -1})
4341, 42eqtr3i 2748 . . . 4 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℤring) ↾s {1, -1})
4443resmhm2 17482 . . 3 (((pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom ((mulGrp‘ℂfld) ↾s {1, -1})) ∧ {1, -1} ∈ (SubMnd‘(mulGrp‘ℤring))) → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring)))
4512, 38, 44sylancl 697 . 2 (𝐴 ∈ Fin → (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring)))
46 mhmco 17484 . 2 (((ℤRHom‘𝑅) ∈ ((mulGrp‘ℤring) MndHom (mulGrp‘𝑅)) ∧ (pmSgn‘𝐴) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘ℤring))) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅)))
476, 45, 46syl2an 495 1 ((𝑅 ∈ Ring ∧ 𝐴 ∈ Fin) → ((ℤRHom‘𝑅) ∘ (pmSgn‘𝐴)) ∈ ((SymGrp‘𝐴) MndHom (mulGrp‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1596  wcel 2103  Vcvv 3304  cdif 3677  wss 3680  {csn 4285  {cpr 4287  ccom 5222  cfv 6001  (class class class)co 6765  Fincfn 8072  cc 10047  0cc0 10049  1c1 10050  -cneg 10380  cz 11490  s cress 15981   MndHom cmhm 17455  SubMndcsubmnd 17456  SubGrpcsubg 17710   GrpHom cghm 17779  SymGrpcsymg 17918  pmSgncpsgn 18030  mulGrpcmgp 18610  Ringcrg 18668   RingHom crh 18835  SubRingcsubrg 18899  fldccnfld 19869  ringzring 19941  ℤRHomczrh 19971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126  ax-addf 10128  ax-mulf 10129
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-xor 1578  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-ot 4294  df-uni 4545  df-int 4584  df-iun 4630  df-iin 4631  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-se 5178  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-isom 6010  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-tpos 7472  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-2o 7681  df-oadd 7684  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-card 8878  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-div 10798  df-nn 11134  df-2 11192  df-3 11193  df-4 11194  df-5 11195  df-6 11196  df-7 11197  df-8 11198  df-9 11199  df-n0 11406  df-xnn0 11477  df-z 11491  df-dec 11607  df-uz 11801  df-rp 11947  df-fz 12441  df-fzo 12581  df-seq 12917  df-exp 12976  df-hash 13233  df-word 13406  df-lsw 13407  df-concat 13408  df-s1 13409  df-substr 13410  df-splice 13411  df-reverse 13412  df-s2 13714  df-struct 15982  df-ndx 15983  df-slot 15984  df-base 15986  df-sets 15987  df-ress 15988  df-plusg 16077  df-mulr 16078  df-starv 16079  df-tset 16083  df-ple 16084  df-ds 16087  df-unif 16088  df-0g 16225  df-gsum 16226  df-mre 16369  df-mrc 16370  df-acs 16372  df-mgm 17364  df-sgrp 17406  df-mnd 17417  df-mhm 17457  df-submnd 17458  df-grp 17547  df-minusg 17548  df-mulg 17663  df-subg 17713  df-ghm 17780  df-gim 17823  df-oppg 17897  df-symg 17919  df-pmtr 17983  df-psgn 18032  df-cmn 18316  df-abl 18317  df-mgp 18611  df-ur 18623  df-ring 18670  df-cring 18671  df-oppr 18744  df-dvdsr 18762  df-unit 18763  df-invr 18793  df-dvr 18804  df-rnghom 18838  df-drng 18872  df-subrg 18901  df-cnfld 19870  df-zring 19942  df-zrh 19975
This theorem is referenced by:  madetsumid  20390  mdetleib2  20517  mdetf  20524  mdetdiaglem  20527  mdetrlin  20531  mdetrsca  20532  mdetralt  20537  mdetunilem7  20547  mdetunilem8  20548
  Copyright terms: Public domain W3C validator