MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhpsgninv Structured version   Visualization version   GIF version

Theorem zrhpsgninv 20133
Description: The embedded sign of a permutation equals the embedded sign of the inverse of the permutation. (Contributed by SO, 9-Jul-2018.)
Hypotheses
Ref Expression
zrhpsgninv.p 𝑃 = (Base‘(SymGrp‘𝑁))
zrhpsgninv.y 𝑌 = (ℤRHom‘𝑅)
zrhpsgninv.s 𝑆 = (pmSgn‘𝑁)
Assertion
Ref Expression
zrhpsgninv ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = ((𝑌𝑆)‘𝐹))

Proof of Theorem zrhpsgninv
StepHypRef Expression
1 eqid 2760 . . . . 5 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2 zrhpsgninv.s . . . . 5 𝑆 = (pmSgn‘𝑁)
3 zrhpsgninv.p . . . . 5 𝑃 = (Base‘(SymGrp‘𝑁))
41, 2, 3psgninv 20130 . . . 4 ((𝑁 ∈ Fin ∧ 𝐹𝑃) → (𝑆𝐹) = (𝑆𝐹))
543adant1 1125 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → (𝑆𝐹) = (𝑆𝐹))
65fveq2d 6356 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → (𝑌‘(𝑆𝐹)) = (𝑌‘(𝑆𝐹)))
7 eqid 2760 . . . . . 6 ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1})
81, 2, 7psgnghm2 20129 . . . . 5 (𝑁 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})))
9 eqid 2760 . . . . . 6 (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) = (Base‘((mulGrp‘ℂfld) ↾s {1, -1}))
103, 9ghmf 17865 . . . . 5 (𝑆 ∈ ((SymGrp‘𝑁) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
118, 10syl 17 . . . 4 (𝑁 ∈ Fin → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
12113ad2ant2 1129 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → 𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})))
13 eqid 2760 . . . . . 6 (invg‘(SymGrp‘𝑁)) = (invg‘(SymGrp‘𝑁))
141, 3, 13symginv 18022 . . . . 5 (𝐹𝑃 → ((invg‘(SymGrp‘𝑁))‘𝐹) = 𝐹)
15143ad2ant3 1130 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) = 𝐹)
161symggrp 18020 . . . . . 6 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
17163ad2ant2 1129 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → (SymGrp‘𝑁) ∈ Grp)
18 simp3 1133 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → 𝐹𝑃)
193, 13grpinvcl 17668 . . . . 5 (((SymGrp‘𝑁) ∈ Grp ∧ 𝐹𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) ∈ 𝑃)
2017, 18, 19syl2anc 696 . . . 4 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((invg‘(SymGrp‘𝑁))‘𝐹) ∈ 𝑃)
2115, 20eqeltrrd 2840 . . 3 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → 𝐹𝑃)
22 fvco3 6437 . . 3 ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
2312, 21, 22syl2anc 696 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
24 fvco3 6437 . . 3 ((𝑆:𝑃⟶(Base‘((mulGrp‘ℂfld) ↾s {1, -1})) ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
2512, 18, 24syl2anc 696 . 2 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = (𝑌‘(𝑆𝐹)))
266, 23, 253eqtr4d 2804 1 ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝐹𝑃) → ((𝑌𝑆)‘𝐹) = ((𝑌𝑆)‘𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1072   = wceq 1632  wcel 2139  {cpr 4323  ccnv 5265  ccom 5270  wf 6045  cfv 6049  (class class class)co 6813  Fincfn 8121  1c1 10129  -cneg 10459  Basecbs 16059  s cress 16060  Grpcgrp 17623  invgcminusg 17624   GrpHom cghm 17858  SymGrpcsymg 17997  pmSgncpsgn 18109  mulGrpcmgp 18689  Ringcrg 18747  fldccnfld 19948  ℤRHomczrh 20050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-xor 1614  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-xnn0 11556  df-z 11570  df-dec 11686  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-word 13485  df-lsw 13486  df-concat 13487  df-s1 13488  df-substr 13489  df-splice 13490  df-reverse 13491  df-s2 13793  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-0g 16304  df-gsum 16305  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-subg 17792  df-ghm 17859  df-gim 17902  df-oppg 17976  df-symg 17998  df-pmtr 18062  df-psgn 18111  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-drng 18951  df-cnfld 19949
This theorem is referenced by:  mdetleib2  20596
  Copyright terms: Public domain W3C validator