MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zrhcopsgndif Structured version   Visualization version   GIF version

Theorem zrhcopsgndif 19997
Description: Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
zrhcopsgndif.p 𝑃 = (Base‘(SymGrp‘𝑁))
zrhcopsgndif.s 𝑆 = (pmSgn‘𝑁)
zrhcopsgndif.z 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))
zrhcopsgndif.y 𝑌 = (ℤRHom‘𝑅)
Assertion
Ref Expression
zrhcopsgndif ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → ((𝑌𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌𝑆)‘𝑄)))
Distinct variable groups:   𝐾,𝑞   𝑃,𝑞   𝑄,𝑞
Allowed substitution hints:   𝑅(𝑞)   𝑆(𝑞)   𝑁(𝑞)   𝑌(𝑞)   𝑍(𝑞)

Proof of Theorem zrhcopsgndif
StepHypRef Expression
1 zrhcopsgndif.p . . . . . 6 𝑃 = (Base‘(SymGrp‘𝑁))
2 zrhcopsgndif.s . . . . . 6 𝑆 = (pmSgn‘𝑁)
3 zrhcopsgndif.z . . . . . 6 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))
41, 2, 3psgndif 19996 . . . . 5 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆𝑄)))
54imp 444 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑆𝑄))
65fveq2d 6233 . . 3 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑌‘(𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾})))) = (𝑌‘(𝑆𝑄)))
7 diffi 8233 . . . . 5 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
87ad2antrr 762 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑁 ∖ {𝐾}) ∈ Fin)
9 eqid 2651 . . . . . 6 {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
10 eqid 2651 . . . . . 6 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
11 eqid 2651 . . . . . 6 (𝑁 ∖ {𝐾}) = (𝑁 ∖ {𝐾})
121, 9, 10, 11symgfixelsi 17901 . . . . 5 ((𝐾𝑁𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
1312adantll 750 . . . 4 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
14 zrhcopsgndif.y . . . . 5 𝑌 = (ℤRHom‘𝑅)
1510, 14, 3zrhcofipsgn 19987 . . . 4 (((𝑁 ∖ {𝐾}) ∈ Fin ∧ (𝑄 ↾ (𝑁 ∖ {𝐾})) ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → ((𝑌𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑌‘(𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾})))))
168, 13, 15syl2anc 694 . . 3 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑌𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = (𝑌‘(𝑍‘(𝑄 ↾ (𝑁 ∖ {𝐾})))))
17 elrabi 3391 . . . . 5 (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → 𝑄𝑃)
181, 14, 2zrhcofipsgn 19987 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → ((𝑌𝑆)‘𝑄) = (𝑌‘(𝑆𝑄)))
1917, 18sylan2 490 . . . 4 ((𝑁 ∈ Fin ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑌𝑆)‘𝑄) = (𝑌‘(𝑆𝑄)))
2019adantlr 751 . . 3 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑌𝑆)‘𝑄) = (𝑌‘(𝑆𝑄)))
216, 16, 203eqtr4d 2695 . 2 (((𝑁 ∈ Fin ∧ 𝐾𝑁) ∧ 𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑌𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌𝑆)‘𝑄))
2221ex 449 1 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑄 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → ((𝑌𝑍)‘(𝑄 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌𝑆)‘𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  {crab 2945  cdif 3604  {csn 4210  cres 5145  ccom 5147  cfv 5926  Fincfn 7997  Basecbs 15904  SymGrpcsymg 17843  pmSgncpsgn 17955  ℤRHomczrh 19896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-xor 1505  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-ot 4219  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-xnn0 11402  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-word 13331  df-lsw 13332  df-concat 13333  df-s1 13334  df-substr 13335  df-splice 13336  df-reverse 13337  df-s2 13639  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-tset 16007  df-0g 16149  df-gsum 16150  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-subg 17638  df-ghm 17705  df-gim 17748  df-oppg 17822  df-symg 17844  df-pmtr 17908  df-psgn 17957
This theorem is referenced by:  smadiadetlem3  20522
  Copyright terms: Public domain W3C validator