![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrhcofipsgn | Structured version Visualization version GIF version |
Description: Composition of a ℤRHom homomorphism and the sign function for a finite permutation. (Contributed by AV, 27-Dec-2018.) |
Ref | Expression |
---|---|
zrhcofipsgn.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
zrhcofipsgn.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
zrhcofipsgn.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
Ref | Expression |
---|---|
zrhcofipsgn | ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2761 | . . 3 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
2 | zrhcofipsgn.p | . . 3 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
3 | eqid 2761 | . . 3 ⊢ {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} | |
4 | zrhcofipsgn.s | . . 3 ⊢ 𝑆 = (pmSgn‘𝑁) | |
5 | 1, 2, 3, 4 | psgnfn 18142 | . 2 ⊢ 𝑆 Fn {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} |
6 | simpr 479 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → 𝑄 ∈ 𝑃) | |
7 | 1, 2 | sygbasnfpfi 18153 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → dom (𝑄 ∖ I ) ∈ Fin) |
8 | difeq1 3865 | . . . . . 6 ⊢ (𝑝 = 𝑄 → (𝑝 ∖ I ) = (𝑄 ∖ I )) | |
9 | 8 | dmeqd 5482 | . . . . 5 ⊢ (𝑝 = 𝑄 → dom (𝑝 ∖ I ) = dom (𝑄 ∖ I )) |
10 | 9 | eleq1d 2825 | . . . 4 ⊢ (𝑝 = 𝑄 → (dom (𝑝 ∖ I ) ∈ Fin ↔ dom (𝑄 ∖ I ) ∈ Fin)) |
11 | 10 | elrab 3505 | . . 3 ⊢ (𝑄 ∈ {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} ↔ (𝑄 ∈ 𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin)) |
12 | 6, 7, 11 | sylanbrc 701 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → 𝑄 ∈ {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin}) |
13 | fvco2 6437 | . 2 ⊢ ((𝑆 Fn {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin} ∧ 𝑄 ∈ {𝑝 ∈ 𝑃 ∣ dom (𝑝 ∖ I ) ∈ Fin}) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) | |
14 | 5, 12, 13 | sylancr 698 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) = (𝑌‘(𝑆‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2140 {crab 3055 ∖ cdif 3713 I cid 5174 dom cdm 5267 ∘ ccom 5271 Fn wfn 6045 ‘cfv 6050 Fincfn 8124 Basecbs 16080 SymGrpcsymg 18018 pmSgncpsgn 18130 ℤRHomczrh 20071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-map 8028 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-z 11591 df-uz 11901 df-fz 12541 df-fzo 12681 df-hash 13333 df-word 13506 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-plusg 16177 df-tset 16183 df-symg 18019 df-psgn 18132 |
This theorem is referenced by: zrhcopsgnelbas 20164 zrhcopsgndif 20172 mdetfval1 20619 mdetpmtr1 30220 mdetpmtr12 30222 |
Copyright terms: Public domain | W3C validator |