![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrevaddcl | Structured version Visualization version GIF version |
Description: Reverse closure law for addition of integers. (Contributed by NM, 11-May-2004.) |
Ref | Expression |
---|---|
zrevaddcl | ⊢ (𝑁 ∈ ℤ → ((𝑀 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℤ) ↔ 𝑀 ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 11589 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
2 | pncan 10493 | . . . . . . . . 9 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) | |
3 | 1, 2 | sylan2 580 | . . . . . . . 8 ⊢ ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
4 | 3 | ancoms 446 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
5 | 4 | adantr 466 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ) ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) − 𝑁) = 𝑀) |
6 | zsubcl 11626 | . . . . . . . 8 ⊢ (((𝑀 + 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 + 𝑁) − 𝑁) ∈ ℤ) | |
7 | 6 | ancoms 446 | . . . . . . 7 ⊢ ((𝑁 ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) − 𝑁) ∈ ℤ) |
8 | 7 | adantlr 694 | . . . . . 6 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ) ∧ (𝑀 + 𝑁) ∈ ℤ) → ((𝑀 + 𝑁) − 𝑁) ∈ ℤ) |
9 | 5, 8 | eqeltrrd 2851 | . . . . 5 ⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ) ∧ (𝑀 + 𝑁) ∈ ℤ) → 𝑀 ∈ ℤ) |
10 | 9 | ex 397 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ) → ((𝑀 + 𝑁) ∈ ℤ → 𝑀 ∈ ℤ)) |
11 | zaddcl 11624 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) | |
12 | 11 | expcom 398 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀 + 𝑁) ∈ ℤ)) |
13 | 12 | adantr 466 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ) → (𝑀 ∈ ℤ → (𝑀 + 𝑁) ∈ ℤ)) |
14 | 10, 13 | impbid 202 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℂ) → ((𝑀 + 𝑁) ∈ ℤ ↔ 𝑀 ∈ ℤ)) |
15 | 14 | pm5.32da 568 | . 2 ⊢ (𝑁 ∈ ℤ → ((𝑀 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℤ) ↔ (𝑀 ∈ ℂ ∧ 𝑀 ∈ ℤ))) |
16 | zcn 11589 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
17 | 16 | pm4.71ri 550 | . 2 ⊢ (𝑀 ∈ ℤ ↔ (𝑀 ∈ ℂ ∧ 𝑀 ∈ ℤ)) |
18 | 15, 17 | syl6bbr 278 | 1 ⊢ (𝑁 ∈ ℤ → ((𝑀 ∈ ℂ ∧ (𝑀 + 𝑁) ∈ ℤ) ↔ 𝑀 ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 (class class class)co 6796 ℂcc 10140 + caddc 10145 − cmin 10472 ℤcz 11584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-n0 11500 df-z 11585 |
This theorem is referenced by: eqreznegel 11982 |
Copyright terms: Public domain | W3C validator |