![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zrei | Structured version Visualization version GIF version |
Description: An integer is a real number. (Contributed by NM, 14-Jul-2005.) |
Ref | Expression |
---|---|
zrei.1 | ⊢ 𝐴 ∈ ℤ |
Ref | Expression |
---|---|
zrei | ⊢ 𝐴 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zrei.1 | . 2 ⊢ 𝐴 ∈ ℤ | |
2 | zre 11582 | . 2 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2144 ℝcr 10136 ℤcz 11578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-iota 5994 df-fv 6039 df-ov 6795 df-neg 10470 df-z 11579 |
This theorem is referenced by: dfuzi 11669 eluzaddi 11914 eluzsubi 11915 dvdslelem 15239 divalglem1 15324 divalglem6 15328 divalglem9 15331 gcdaddmlem 15452 basellem9 25035 axlowdimlem16 26057 poimirlem17 33752 poimirlem19 33754 poimirlem20 33755 fdc 33866 jm2.27dlem2 38096 |
Copyright terms: Public domain | W3C validator |