MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zq Structured version   Visualization version   GIF version

Theorem zq 12007
Description: An integer is a rational number. (Contributed by NM, 9-Jan-2002.)
Assertion
Ref Expression
zq (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)

Proof of Theorem zq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zcn 11594 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
21div1d 11005 . . . . . 6 (𝑥 ∈ ℤ → (𝑥 / 1) = 𝑥)
32eqeq2d 2770 . . . . 5 (𝑥 ∈ ℤ → (𝐴 = (𝑥 / 1) ↔ 𝐴 = 𝑥))
4 eqcom 2767 . . . . 5 (𝑥 = 𝐴𝐴 = 𝑥)
53, 4syl6rbbr 279 . . . 4 (𝑥 ∈ ℤ → (𝑥 = 𝐴𝐴 = (𝑥 / 1)))
6 1nn 11243 . . . . 5 1 ∈ ℕ
7 oveq2 6822 . . . . . . 7 (𝑦 = 1 → (𝑥 / 𝑦) = (𝑥 / 1))
87eqeq2d 2770 . . . . . 6 (𝑦 = 1 → (𝐴 = (𝑥 / 𝑦) ↔ 𝐴 = (𝑥 / 1)))
98rspcev 3449 . . . . 5 ((1 ∈ ℕ ∧ 𝐴 = (𝑥 / 1)) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
106, 9mpan 708 . . . 4 (𝐴 = (𝑥 / 1) → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
115, 10syl6bi 243 . . 3 (𝑥 ∈ ℤ → (𝑥 = 𝐴 → ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦)))
1211reximia 3147 . 2 (∃𝑥 ∈ ℤ 𝑥 = 𝐴 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
13 risset 3200 . 2 (𝐴 ∈ ℤ ↔ ∃𝑥 ∈ ℤ 𝑥 = 𝐴)
14 elq 12003 . 2 (𝐴 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝐴 = (𝑥 / 𝑦))
1512, 13, 143imtr4i 281 1 (𝐴 ∈ ℤ → 𝐴 ∈ ℚ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  wrex 3051  (class class class)co 6814  1c1 10149   / cdiv 10896  cn 11232  cz 11589  cq 12001
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-z 11590  df-q 12002
This theorem is referenced by:  zssq  12008  qbtwnxr  12244  modirr  12955  qexpcl  13090  qexpclz  13095  zsqrtelqelz  15688  pczpre  15774  pc0  15781  pcrec  15785  pcdvdstr  15802  pcgcd1  15803  pcgcd  15804  pc2dvds  15805  pc11  15806  sylow1lem1  18233  vitalilem1  23596  elqaalem1  24293  elqaalem3  24295  qaa  24297  lgsneg  25266  lgsdilem2  25278  lgsne0  25280  qabvle  25534  ostthlem1  25536  ostthlem2  25537  padicabv  25539  ostth2lem2  25543  ostth2  25546  ostth3  25547  qqhucn  30366  mblfinlem1  33777  rmxypairf1o  37996  rmxycomplete  38002  rmxyadd  38006  rmxy1  38007  mpaaeu  38240  aacllem  43078
  Copyright terms: Public domain W3C validator