MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem7 Structured version   Visualization version   GIF version

Theorem zorn2lem7 9362
Description: Lemma for zorn2 9366. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
zorn2lem.7 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem7 ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)
Distinct variable groups:   𝑎,𝑏,𝑓,𝑔,𝑟,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑎,𝑏,𝑓,𝑢,𝑣,𝑦   𝐹,𝑎,𝑏,𝑓,𝑔,𝑟,𝑠,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑎,𝑏,𝑓,𝑔,𝑟,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶   𝑥,𝐻,𝑢,𝑣,𝑓,𝑠,𝑟,𝑎,𝑏
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔,𝑠,𝑟,𝑎,𝑏)   𝐷(𝑥,𝑧,𝑤,𝑔,𝑠,𝑟)   𝐹(𝑤)   𝐻(𝑦,𝑧,𝑤,𝑔)

Proof of Theorem zorn2lem7
StepHypRef Expression
1 ween 8896 . . 3 (𝐴 ∈ dom card ↔ ∃𝑤 𝑤 We 𝐴)
2 zorn2lem.3 . . . . . . . . 9 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
3 zorn2lem.4 . . . . . . . . 9 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
4 zorn2lem.5 . . . . . . . . 9 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
52, 3, 4zorn2lem4 9359 . . . . . . . 8 ((𝑅 Po 𝐴𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅)
6 imaeq2 5497 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
76raleqdv 3174 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧))
87rabbidv 3220 . . . . . . . . . . . 12 (𝑥 = 𝑦 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧})
9 zorn2lem.7 . . . . . . . . . . . 12 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
108, 4, 93eqtr4g 2710 . . . . . . . . . . 11 (𝑥 = 𝑦𝐷 = 𝐻)
1110eqeq1d 2653 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐷 = ∅ ↔ 𝐻 = ∅))
1211onminex 7049 . . . . . . . . 9 (∃𝑥 ∈ On 𝐷 = ∅ → ∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 ¬ 𝐻 = ∅))
13 df-ne 2824 . . . . . . . . . . . 12 (𝐻 ≠ ∅ ↔ ¬ 𝐻 = ∅)
1413ralbii 3009 . . . . . . . . . . 11 (∀𝑦𝑥 𝐻 ≠ ∅ ↔ ∀𝑦𝑥 ¬ 𝐻 = ∅)
1514anbi2i 730 . . . . . . . . . 10 ((𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) ↔ (𝐷 = ∅ ∧ ∀𝑦𝑥 ¬ 𝐻 = ∅))
1615rexbii 3070 . . . . . . . . 9 (∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) ↔ ∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 ¬ 𝐻 = ∅))
1712, 16sylibr 224 . . . . . . . 8 (∃𝑥 ∈ On 𝐷 = ∅ → ∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅))
182, 3, 4, 9zorn2lem5 9360 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴)
1918a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴))
202, 3, 4, 9zorn2lem6 9361 . . . . . . . . . . . . . . . . . . 19 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → 𝑅 Or (𝐹𝑥)))
2119, 20jcad 554 . . . . . . . . . . . . . . . . . 18 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ((𝐹𝑥) ⊆ 𝐴𝑅 Or (𝐹𝑥))))
222tfr1 7538 . . . . . . . . . . . . . . . . . . . 20 𝐹 Fn On
23 fnfun 6026 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn On → Fun 𝐹)
24 vex 3234 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
2524funimaex 6014 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝐹 → (𝐹𝑥) ∈ V)
2622, 23, 25mp2b 10 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑥) ∈ V
27 sseq1 3659 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝐹𝑥) → (𝑠𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
28 soeq2 5084 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝐹𝑥) → (𝑅 Or 𝑠𝑅 Or (𝐹𝑥)))
2927, 28anbi12d 747 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = (𝐹𝑥) → ((𝑠𝐴𝑅 Or 𝑠) ↔ ((𝐹𝑥) ⊆ 𝐴𝑅 Or (𝐹𝑥))))
30 raleq 3168 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝐹𝑥) → (∀𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎) ↔ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3130rexbidv 3081 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = (𝐹𝑥) → (∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎) ↔ ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3229, 31imbi12d 333 . . . . . . . . . . . . . . . . . . 19 (𝑠 = (𝐹𝑥) → (((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎)) ↔ (((𝐹𝑥) ⊆ 𝐴𝑅 Or (𝐹𝑥)) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎))))
3326, 32spcv 3330 . . . . . . . . . . . . . . . . . 18 (∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎)) → (((𝐹𝑥) ⊆ 𝐴𝑅 Or (𝐹𝑥)) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3421, 33sylan9 690 . . . . . . . . . . . . . . . . 17 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3534adantld 482 . . . . . . . . . . . . . . . 16 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ((𝐷 = ∅ ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3635imp 444 . . . . . . . . . . . . . . 15 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ (𝐷 = ∅ ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎))
37 noel 3952 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ¬ 𝑏 ∈ ∅
3818sseld 3635 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝑟 ∈ (𝐹𝑥) → 𝑟𝐴))
39 3anass 1059 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑟𝐴𝑎𝐴𝑏𝐴) ↔ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴)))
40 potr 5076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑅 Po 𝐴 ∧ (𝑟𝐴𝑎𝐴𝑏𝐴)) → ((𝑟𝑅𝑎𝑎𝑅𝑏) → 𝑟𝑅𝑏))
4139, 40sylan2br 492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) → ((𝑟𝑅𝑎𝑎𝑅𝑏) → 𝑟𝑅𝑏))
4241expcomd 453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) → (𝑎𝑅𝑏 → (𝑟𝑅𝑎𝑟𝑅𝑏)))
4342imp 444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) ∧ 𝑎𝑅𝑏) → (𝑟𝑅𝑎𝑟𝑅𝑏))
44 breq1 4688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑟 = 𝑎 → (𝑟𝑅𝑏𝑎𝑅𝑏))
4544biimprcd 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑎𝑅𝑏 → (𝑟 = 𝑎𝑟𝑅𝑏))
4645adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) ∧ 𝑎𝑅𝑏) → (𝑟 = 𝑎𝑟𝑅𝑏))
4743, 46jaod 394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) ∧ 𝑎𝑅𝑏) → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏))
4847exp42 638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑅 Po 𝐴 → (𝑟𝐴 → ((𝑎𝐴𝑏𝐴) → (𝑎𝑅𝑏 → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))))
4938, 48sylan9r 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑟 ∈ (𝐹𝑥) → ((𝑎𝐴𝑏𝐴) → (𝑎𝑅𝑏 → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))))
5049com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑎𝑅𝑏 → ((𝑎𝐴𝑏𝐴) → (𝑟 ∈ (𝐹𝑥) → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))))
5150com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → ((𝑎𝐴𝑏𝐴) → (𝑎𝑅𝑏 → (𝑟 ∈ (𝐹𝑥) → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))))
5251imp31 447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑎𝑅𝑏) → (𝑟 ∈ (𝐹𝑥) → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))
5352a2d 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑎𝑅𝑏) → ((𝑟 ∈ (𝐹𝑥) → (𝑟𝑅𝑎𝑟 = 𝑎)) → (𝑟 ∈ (𝐹𝑥) → 𝑟𝑅𝑏)))
5453ralimdv2 2990 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑎𝑅𝑏) → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∀𝑟 ∈ (𝐹𝑥)𝑟𝑅𝑏))
55 breq1 4688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑟 = 𝑔 → (𝑟𝑅𝑏𝑔𝑅𝑏))
5655cbvralv 3201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (∀𝑟 ∈ (𝐹𝑥)𝑟𝑅𝑏 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏)
57 breq2 4689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑧 = 𝑏 → (𝑔𝑅𝑧𝑔𝑅𝑏))
5857ralbidv 3015 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑧 = 𝑏 → (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏))
5958elrab 3396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑏 ∈ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} ↔ (𝑏𝐴 ∧ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏))
604eqeq1i 2656 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐷 = ∅ ↔ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} = ∅)
61 eleq2 2719 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} = ∅ → (𝑏 ∈ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} ↔ 𝑏 ∈ ∅))
6260, 61sylbi 207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐷 = ∅ → (𝑏 ∈ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} ↔ 𝑏 ∈ ∅))
6359, 62syl5bbr 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝐷 = ∅ → ((𝑏𝐴 ∧ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏) ↔ 𝑏 ∈ ∅))
6463biimpd 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐷 = ∅ → ((𝑏𝐴 ∧ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏) → 𝑏 ∈ ∅))
6564expdimp 452 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐷 = ∅ ∧ 𝑏𝐴) → (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏𝑏 ∈ ∅))
6656, 65syl5bi 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐷 = ∅ ∧ 𝑏𝐴) → (∀𝑟 ∈ (𝐹𝑥)𝑟𝑅𝑏𝑏 ∈ ∅))
6754, 66sylan9r 691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐷 = ∅ ∧ 𝑏𝐴) ∧ (((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑎𝑅𝑏)) → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → 𝑏 ∈ ∅))
6867exp32 630 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐷 = ∅ ∧ 𝑏𝐴) → (((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → 𝑏 ∈ ∅))))
6968com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐷 = ∅ ∧ 𝑏𝐴) → (((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → (𝑎𝑅𝑏𝑏 ∈ ∅))))
7069imp31 447 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐷 = ∅ ∧ 𝑏𝐴) ∧ ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴))) ∧ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)) → (𝑎𝑅𝑏𝑏 ∈ ∅))
7137, 70mtoi 190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐷 = ∅ ∧ 𝑏𝐴) ∧ ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴))) ∧ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)) → ¬ 𝑎𝑅𝑏)
7271exp42 638 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐷 = ∅ ∧ 𝑏𝐴) → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → ((𝑎𝐴𝑏𝐴) → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏))))
7372exp4a 632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐷 = ∅ ∧ 𝑏𝐴) → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑎𝐴 → (𝑏𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏)))))
7473com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐷 = ∅ ∧ 𝑏𝐴) → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑏𝐴 → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏)))))
7574ex 449 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐷 = ∅ → (𝑏𝐴 → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑏𝐴 → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏))))))
7675com4r 94 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏𝐴 → (𝐷 = ∅ → (𝑏𝐴 → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏))))))
7776pm2.43a 54 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏𝐴 → (𝐷 = ∅ → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏)))))
7877impd 446 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏𝐴 → ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏))))
7978com4l 92 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → (𝑏𝐴 → ¬ 𝑎𝑅𝑏))))
8079impd 446 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → ((𝑎𝐴 ∧ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)) → (𝑏𝐴 → ¬ 𝑎𝑅𝑏)))
8180ralrimdv 2997 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → ((𝑎𝐴 ∧ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)) → ∀𝑏𝐴 ¬ 𝑎𝑅𝑏))
8281expd 451 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∀𝑏𝐴 ¬ 𝑎𝑅𝑏)))
8382reximdvai 3044 . . . . . . . . . . . . . . . . . . 19 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
8483exp32 630 . . . . . . . . . . . . . . . . . 18 (𝐷 = ∅ → (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
8584com12 32 . . . . . . . . . . . . . . . . 17 (𝑅 Po 𝐴 → (𝐷 = ∅ → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
8685adantr 480 . . . . . . . . . . . . . . . 16 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → (𝐷 = ∅ → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
8786imp32 448 . . . . . . . . . . . . . . 15 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ (𝐷 = ∅ ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
8836, 87mpd 15 . . . . . . . . . . . . . 14 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ (𝐷 = ∅ ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)
8988exp45 641 . . . . . . . . . . . . 13 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → (𝐷 = ∅ → ((𝑤 We 𝐴𝑥 ∈ On) → (∀𝑦𝑥 𝐻 ≠ ∅ → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
9089com23 86 . . . . . . . . . . . 12 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ((𝑤 We 𝐴𝑥 ∈ On) → (𝐷 = ∅ → (∀𝑦𝑥 𝐻 ≠ ∅ → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
9190expdimp 452 . . . . . . . . . . 11 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → (𝑥 ∈ On → (𝐷 = ∅ → (∀𝑦𝑥 𝐻 ≠ ∅ → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
9291imp4a 613 . . . . . . . . . 10 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → (𝑥 ∈ On → ((𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)))
9392com3l 89 . . . . . . . . 9 (𝑥 ∈ On → ((𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)))
9493rexlimiv 3056 . . . . . . . 8 (∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
955, 17, 943syl 18 . . . . . . 7 ((𝑅 Po 𝐴𝑤 We 𝐴) → (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
9695adantlr 751 . . . . . 6 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
9796pm2.43i 52 . . . . 5 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)
9897expcom 450 . . . 4 (𝑤 We 𝐴 → ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
9998exlimiv 1898 . . 3 (∃𝑤 𝑤 We 𝐴 → ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
1001, 99sylbi 207 . 2 (𝐴 ∈ dom card → ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
1011003impib 1281 1 ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054  wal 1521   = wceq 1523  wex 1744  wcel 2030  wne 2823  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  wss 3607  c0 3948   class class class wbr 4685  cmpt 4762   Po wpo 5062   Or wor 5063   We wwe 5101  dom cdm 5143  ran crn 5144  cima 5146  Oncon0 5761  Fun wfun 5920   Fn wfn 5921  crio 6650  recscrecs 7512  cardccrd 8799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-wrecs 7452  df-recs 7513  df-en 7998  df-card 8803
This theorem is referenced by:  zorn2g  9363
  Copyright terms: Public domain W3C validator