MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zorn2lem7 Structured version   Visualization version   GIF version

Theorem zorn2lem7 9547
Description: Lemma for zorn2 9551. (Contributed by NM, 6-Apr-1997.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
zorn2lem.3 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
zorn2lem.4 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
zorn2lem.5 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
zorn2lem.7 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
Assertion
Ref Expression
zorn2lem7 ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)
Distinct variable groups:   𝑎,𝑏,𝑓,𝑔,𝑟,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧,𝐴   𝐷,𝑎,𝑏,𝑓,𝑢,𝑣,𝑦   𝐹,𝑎,𝑏,𝑓,𝑔,𝑟,𝑠,𝑢,𝑣,𝑥,𝑦,𝑧   𝑅,𝑎,𝑏,𝑓,𝑔,𝑟,𝑠,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝑣,𝐶   𝑥,𝐻,𝑢,𝑣,𝑓,𝑠,𝑟,𝑎,𝑏
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧,𝑤,𝑢,𝑓,𝑔,𝑠,𝑟,𝑎,𝑏)   𝐷(𝑥,𝑧,𝑤,𝑔,𝑠,𝑟)   𝐹(𝑤)   𝐻(𝑦,𝑧,𝑤,𝑔)

Proof of Theorem zorn2lem7
StepHypRef Expression
1 ween 9079 . . 3 (𝐴 ∈ dom card ↔ ∃𝑤 𝑤 We 𝐴)
2 zorn2lem.3 . . . . . . . . 9 𝐹 = recs((𝑓 ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑤𝑣)))
3 zorn2lem.4 . . . . . . . . 9 𝐶 = {𝑧𝐴 ∣ ∀𝑔 ∈ ran 𝑓 𝑔𝑅𝑧}
4 zorn2lem.5 . . . . . . . . 9 𝐷 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧}
52, 3, 4zorn2lem4 9544 . . . . . . . 8 ((𝑅 Po 𝐴𝑤 We 𝐴) → ∃𝑥 ∈ On 𝐷 = ∅)
6 imaeq2 5613 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝐹𝑥) = (𝐹𝑦))
76raleqdv 3297 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧))
87rabbidv 3343 . . . . . . . . . . . 12 (𝑥 = 𝑦 → {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧})
9 zorn2lem.7 . . . . . . . . . . . 12 𝐻 = {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑦)𝑔𝑅𝑧}
108, 4, 93eqtr4g 2833 . . . . . . . . . . 11 (𝑥 = 𝑦𝐷 = 𝐻)
1110eqeq1d 2776 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝐷 = ∅ ↔ 𝐻 = ∅))
1211onminex 7175 . . . . . . . . 9 (∃𝑥 ∈ On 𝐷 = ∅ → ∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 ¬ 𝐻 = ∅))
13 df-ne 2947 . . . . . . . . . . . 12 (𝐻 ≠ ∅ ↔ ¬ 𝐻 = ∅)
1413ralbii 3132 . . . . . . . . . . 11 (∀𝑦𝑥 𝐻 ≠ ∅ ↔ ∀𝑦𝑥 ¬ 𝐻 = ∅)
1514anbi2i 610 . . . . . . . . . 10 ((𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) ↔ (𝐷 = ∅ ∧ ∀𝑦𝑥 ¬ 𝐻 = ∅))
1615rexbii 3193 . . . . . . . . 9 (∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) ↔ ∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 ¬ 𝐻 = ∅))
1712, 16sylibr 225 . . . . . . . 8 (∃𝑥 ∈ On 𝐷 = ∅ → ∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅))
182, 3, 4, 9zorn2lem5 9545 . . . . . . . . . . . . . . . . . . . 20 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴)
1918a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝐹𝑥) ⊆ 𝐴))
202, 3, 4, 9zorn2lem6 9546 . . . . . . . . . . . . . . . . . . 19 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → 𝑅 Or (𝐹𝑥)))
2119, 20jcad 503 . . . . . . . . . . . . . . . . . 18 (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ((𝐹𝑥) ⊆ 𝐴𝑅 Or (𝐹𝑥))))
222tfr1 7667 . . . . . . . . . . . . . . . . . . . 20 𝐹 Fn On
23 fnfun 6139 . . . . . . . . . . . . . . . . . . . 20 (𝐹 Fn On → Fun 𝐹)
24 vex 3358 . . . . . . . . . . . . . . . . . . . . 21 𝑥 ∈ V
2524funimaex 6127 . . . . . . . . . . . . . . . . . . . 20 (Fun 𝐹 → (𝐹𝑥) ∈ V)
2622, 23, 25mp2b 10 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑥) ∈ V
27 sseq1 3782 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝐹𝑥) → (𝑠𝐴 ↔ (𝐹𝑥) ⊆ 𝐴))
28 soeq2 5204 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝐹𝑥) → (𝑅 Or 𝑠𝑅 Or (𝐹𝑥)))
2927, 28anbi12d 617 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = (𝐹𝑥) → ((𝑠𝐴𝑅 Or 𝑠) ↔ ((𝐹𝑥) ⊆ 𝐴𝑅 Or (𝐹𝑥))))
30 raleq 3291 . . . . . . . . . . . . . . . . . . . . 21 (𝑠 = (𝐹𝑥) → (∀𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎) ↔ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3130rexbidv 3204 . . . . . . . . . . . . . . . . . . . 20 (𝑠 = (𝐹𝑥) → (∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎) ↔ ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3229, 31imbi12d 334 . . . . . . . . . . . . . . . . . . 19 (𝑠 = (𝐹𝑥) → (((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎)) ↔ (((𝐹𝑥) ⊆ 𝐴𝑅 Or (𝐹𝑥)) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎))))
3326, 32spcv 3455 . . . . . . . . . . . . . . . . . 18 (∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎)) → (((𝐹𝑥) ⊆ 𝐴𝑅 Or (𝐹𝑥)) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3421, 33sylan9 498 . . . . . . . . . . . . . . . . 17 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3534adantld 479 . . . . . . . . . . . . . . . 16 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ((𝐷 = ∅ ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)))
3635imp 394 . . . . . . . . . . . . . . 15 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ (𝐷 = ∅ ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → ∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎))
37 noel 4077 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ¬ 𝑏 ∈ ∅
3818sseld 3757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (𝑟 ∈ (𝐹𝑥) → 𝑟𝐴))
39 3anass 1107 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑟𝐴𝑎𝐴𝑏𝐴) ↔ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴)))
40 potr 5196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ((𝑅 Po 𝐴 ∧ (𝑟𝐴𝑎𝐴𝑏𝐴)) → ((𝑟𝑅𝑎𝑎𝑅𝑏) → 𝑟𝑅𝑏))
4139, 40sylan2br 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) → ((𝑟𝑅𝑎𝑎𝑅𝑏) → 𝑟𝑅𝑏))
4241expcomd 403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 ((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) → (𝑎𝑅𝑏 → (𝑟𝑅𝑎𝑟𝑅𝑏)))
4342imp 394 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) ∧ 𝑎𝑅𝑏) → (𝑟𝑅𝑎𝑟𝑅𝑏))
44 breq1 4800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 (𝑟 = 𝑎 → (𝑟𝑅𝑏𝑎𝑅𝑏))
4544biimprcd 241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 (𝑎𝑅𝑏 → (𝑟 = 𝑎𝑟𝑅𝑏))
4645adantl 468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) ∧ 𝑎𝑅𝑏) → (𝑟 = 𝑎𝑟𝑅𝑏))
4743, 46jaod 875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (((𝑅 Po 𝐴 ∧ (𝑟𝐴 ∧ (𝑎𝐴𝑏𝐴))) ∧ 𝑎𝑅𝑏) → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏))
4847exp42 423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑅 Po 𝐴 → (𝑟𝐴 → ((𝑎𝐴𝑏𝐴) → (𝑎𝑅𝑏 → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))))
4938, 48sylan9r 499 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑟 ∈ (𝐹𝑥) → ((𝑎𝐴𝑏𝐴) → (𝑎𝑅𝑏 → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))))
5049com24 95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑎𝑅𝑏 → ((𝑎𝐴𝑏𝐴) → (𝑟 ∈ (𝐹𝑥) → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))))
5150com23 86 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → ((𝑎𝐴𝑏𝐴) → (𝑎𝑅𝑏 → (𝑟 ∈ (𝐹𝑥) → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))))
5251imp31 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑎𝑅𝑏) → (𝑟 ∈ (𝐹𝑥) → ((𝑟𝑅𝑎𝑟 = 𝑎) → 𝑟𝑅𝑏)))
5352a2d 29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑎𝑅𝑏) → ((𝑟 ∈ (𝐹𝑥) → (𝑟𝑅𝑎𝑟 = 𝑎)) → (𝑟 ∈ (𝐹𝑥) → 𝑟𝑅𝑏)))
5453ralimdv2 3113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑎𝑅𝑏) → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∀𝑟 ∈ (𝐹𝑥)𝑟𝑅𝑏))
55 breq1 4800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑟 = 𝑔 → (𝑟𝑅𝑏𝑔𝑅𝑏))
5655cbvralv 3324 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (∀𝑟 ∈ (𝐹𝑥)𝑟𝑅𝑏 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏)
57 breq2 4801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 (𝑧 = 𝑏 → (𝑔𝑅𝑧𝑔𝑅𝑏))
5857ralbidv 3138 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑧 = 𝑏 → (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧 ↔ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏))
5958elrab 3521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑏 ∈ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} ↔ (𝑏𝐴 ∧ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏))
604eqeq1i 2779 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝐷 = ∅ ↔ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} = ∅)
61 eleq2 2842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ({𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} = ∅ → (𝑏 ∈ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} ↔ 𝑏 ∈ ∅))
6260, 61sylbi 208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝐷 = ∅ → (𝑏 ∈ {𝑧𝐴 ∣ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑧} ↔ 𝑏 ∈ ∅))
6359, 62syl5bbr 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝐷 = ∅ → ((𝑏𝐴 ∧ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏) ↔ 𝑏 ∈ ∅))
6463biimpd 220 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝐷 = ∅ → ((𝑏𝐴 ∧ ∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏) → 𝑏 ∈ ∅))
6564expdimp 441 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝐷 = ∅ ∧ 𝑏𝐴) → (∀𝑔 ∈ (𝐹𝑥)𝑔𝑅𝑏𝑏 ∈ ∅))
6656, 65syl5bi 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐷 = ∅ ∧ 𝑏𝐴) → (∀𝑟 ∈ (𝐹𝑥)𝑟𝑅𝑏𝑏 ∈ ∅))
6754, 66sylan9r 499 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝐷 = ∅ ∧ 𝑏𝐴) ∧ (((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) ∧ 𝑎𝑅𝑏)) → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → 𝑏 ∈ ∅))
6867exp32 408 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐷 = ∅ ∧ 𝑏𝐴) → (((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) → (𝑎𝑅𝑏 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → 𝑏 ∈ ∅))))
6968com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝐷 = ∅ ∧ 𝑏𝐴) → (((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴)) → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → (𝑎𝑅𝑏𝑏 ∈ ∅))))
7069imp31 405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝐷 = ∅ ∧ 𝑏𝐴) ∧ ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴))) ∧ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)) → (𝑎𝑅𝑏𝑏 ∈ ∅))
7137, 70mtoi 190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝐷 = ∅ ∧ 𝑏𝐴) ∧ ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) ∧ (𝑎𝐴𝑏𝐴))) ∧ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)) → ¬ 𝑎𝑅𝑏)
7271exp42 423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐷 = ∅ ∧ 𝑏𝐴) → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → ((𝑎𝐴𝑏𝐴) → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏))))
7372exp4a 419 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐷 = ∅ ∧ 𝑏𝐴) → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑎𝐴 → (𝑏𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏)))))
7473com34 91 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐷 = ∅ ∧ 𝑏𝐴) → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑏𝐴 → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏)))))
7574ex 398 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐷 = ∅ → (𝑏𝐴 → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑏𝐴 → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏))))))
7675com4r 94 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑏𝐴 → (𝐷 = ∅ → (𝑏𝐴 → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏))))))
7776pm2.43a 54 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑏𝐴 → (𝐷 = ∅ → ((𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅)) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏)))))
7877impd 397 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑏𝐴 → ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ¬ 𝑎𝑅𝑏))))
7978com4l 92 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → (𝑏𝐴 → ¬ 𝑎𝑅𝑏))))
8079impd 397 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → ((𝑎𝐴 ∧ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)) → (𝑏𝐴 → ¬ 𝑎𝑅𝑏)))
8180ralrimdv 3120 . . . . . . . . . . . . . . . . . . . . 21 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → ((𝑎𝐴 ∧ ∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎)) → ∀𝑏𝐴 ¬ 𝑎𝑅𝑏))
8281expd 401 . . . . . . . . . . . . . . . . . . . 20 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (𝑎𝐴 → (∀𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∀𝑏𝐴 ¬ 𝑎𝑅𝑏)))
8382reximdvai 3166 . . . . . . . . . . . . . . . . . . 19 ((𝐷 = ∅ ∧ (𝑅 Po 𝐴 ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
8483exp32 408 . . . . . . . . . . . . . . . . . 18 (𝐷 = ∅ → (𝑅 Po 𝐴 → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
8584com12 32 . . . . . . . . . . . . . . . . 17 (𝑅 Po 𝐴 → (𝐷 = ∅ → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
8685adantr 467 . . . . . . . . . . . . . . . 16 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → (𝐷 = ∅ → (((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
8786imp32 406 . . . . . . . . . . . . . . 15 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ (𝐷 = ∅ ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → (∃𝑎𝐴𝑟 ∈ (𝐹𝑥)(𝑟𝑅𝑎𝑟 = 𝑎) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
8836, 87mpd 15 . . . . . . . . . . . . . 14 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ (𝐷 = ∅ ∧ ((𝑤 We 𝐴𝑥 ∈ On) ∧ ∀𝑦𝑥 𝐻 ≠ ∅))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)
8988exp45 426 . . . . . . . . . . . . 13 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → (𝐷 = ∅ → ((𝑤 We 𝐴𝑥 ∈ On) → (∀𝑦𝑥 𝐻 ≠ ∅ → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
9089com23 86 . . . . . . . . . . . 12 ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ((𝑤 We 𝐴𝑥 ∈ On) → (𝐷 = ∅ → (∀𝑦𝑥 𝐻 ≠ ∅ → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
9190expdimp 441 . . . . . . . . . . 11 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → (𝑥 ∈ On → (𝐷 = ∅ → (∀𝑦𝑥 𝐻 ≠ ∅ → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))))
9291imp4a 410 . . . . . . . . . 10 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → (𝑥 ∈ On → ((𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)))
9392com3l 89 . . . . . . . . 9 (𝑥 ∈ On → ((𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)))
9493rexlimiv 3179 . . . . . . . 8 (∃𝑥 ∈ On (𝐷 = ∅ ∧ ∀𝑦𝑥 𝐻 ≠ ∅) → (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
955, 17, 943syl 18 . . . . . . 7 ((𝑅 Po 𝐴𝑤 We 𝐴) → (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
9695adantlr 695 . . . . . 6 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
9796pm2.43i 52 . . . . 5 (((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) ∧ 𝑤 We 𝐴) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)
9897expcom 399 . . . 4 (𝑤 We 𝐴 → ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
9998exlimiv 2013 . . 3 (∃𝑤 𝑤 We 𝐴 → ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
1001, 99sylbi 208 . 2 (𝐴 ∈ dom card → ((𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏))
1011003impib 1135 1 ((𝐴 ∈ dom card ∧ 𝑅 Po 𝐴 ∧ ∀𝑠((𝑠𝐴𝑅 Or 𝑠) → ∃𝑎𝐴𝑟𝑠 (𝑟𝑅𝑎𝑟 = 𝑎))) → ∃𝑎𝐴𝑏𝐴 ¬ 𝑎𝑅𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 383  wo 863  w3a 1098  wal 1632   = wceq 1634  wex 1855  wcel 2148  wne 2946  wral 3064  wrex 3065  {crab 3068  Vcvv 3355  wss 3729  c0 4073   class class class wbr 4797  cmpt 4876   Po wpo 5182   Or wor 5183   We wwe 5221  dom cdm 5263  ran crn 5264  cima 5266  Oncon0 5877  Fun wfun 6036   Fn wfn 6037  crio 6772  recscrecs 7641  cardccrd 8982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-se 5223  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-isom 6051  df-riota 6773  df-wrecs 7580  df-recs 7642  df-en 8131  df-card 8986
This theorem is referenced by:  zorn2g  9548
  Copyright terms: Public domain W3C validator