Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  znzrhval Structured version   Visualization version   GIF version

Theorem znzrhval 20089
 Description: The ℤ ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znzrh2.s 𝑆 = (RSpan‘ℤring)
znzrh2.r = (ℤring ~QG (𝑆‘{𝑁}))
znzrh2.y 𝑌 = (ℤ/nℤ‘𝑁)
znzrh2.2 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
znzrhval ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐿𝐴) = [𝐴] )

Proof of Theorem znzrhval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 znzrh2.s . . . 4 𝑆 = (RSpan‘ℤring)
2 znzrh2.r . . . 4 = (ℤring ~QG (𝑆‘{𝑁}))
3 znzrh2.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
4 znzrh2.2 . . . 4 𝐿 = (ℤRHom‘𝑌)
51, 2, 3, 4znzrh2 20088 . . 3 (𝑁 ∈ ℕ0𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ))
65fveq1d 6346 . 2 (𝑁 ∈ ℕ0 → (𝐿𝐴) = ((𝑥 ∈ ℤ ↦ [𝑥] )‘𝐴))
7 eceq1 7941 . . 3 (𝑥 = 𝐴 → [𝑥] = [𝐴] )
8 eqid 2752 . . 3 (𝑥 ∈ ℤ ↦ [𝑥] ) = (𝑥 ∈ ℤ ↦ [𝑥] )
9 ovex 6833 . . . . 5 (ℤring ~QG (𝑆‘{𝑁})) ∈ V
102, 9eqeltri 2827 . . . 4 ∈ V
11 ecexg 7907 . . . 4 ( ∈ V → [𝐴] ∈ V)
1210, 11ax-mp 5 . . 3 [𝐴] ∈ V
137, 8, 12fvmpt 6436 . 2 (𝐴 ∈ ℤ → ((𝑥 ∈ ℤ ↦ [𝑥] )‘𝐴) = [𝐴] )
146, 13sylan9eq 2806 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐿𝐴) = [𝐴] )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1624   ∈ wcel 2131  Vcvv 3332  {csn 4313   ↦ cmpt 4873  ‘cfv 6041  (class class class)co 6805  [cec 7901  ℕ0cn0 11476  ℤcz 11561   ~QG cqg 17783  RSpancrsp 19365  ℤringzring 20012  ℤRHomczrh 20042  ℤ/nℤczn 20045 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-inf2 8703  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-addf 10199  ax-mulf 10200 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-int 4620  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-tpos 7513  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-1o 7721  df-oadd 7725  df-er 7903  df-ec 7905  df-qs 7909  df-map 8017  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8505  df-inf 8506  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-5 11266  df-6 11267  df-7 11268  df-8 11269  df-9 11270  df-n0 11477  df-z 11562  df-dec 11678  df-uz 11872  df-fz 12512  df-seq 12988  df-struct 16053  df-ndx 16054  df-slot 16055  df-base 16057  df-sets 16058  df-ress 16059  df-plusg 16148  df-mulr 16149  df-starv 16150  df-sca 16151  df-vsca 16152  df-ip 16153  df-tset 16154  df-ple 16155  df-ds 16158  df-unif 16159  df-0g 16296  df-imas 16362  df-qus 16363  df-mgm 17435  df-sgrp 17477  df-mnd 17488  df-mhm 17528  df-grp 17618  df-minusg 17619  df-sbg 17620  df-mulg 17734  df-subg 17784  df-nsg 17785  df-eqg 17786  df-ghm 17851  df-cmn 18387  df-abl 18388  df-mgp 18682  df-ur 18694  df-ring 18741  df-cring 18742  df-oppr 18815  df-rnghom 18909  df-subrg 18972  df-lmod 19059  df-lss 19127  df-lsp 19166  df-sra 19366  df-rgmod 19367  df-lidl 19368  df-rsp 19369  df-2idl 19426  df-cnfld 19941  df-zring 20013  df-zrh 20046  df-zn 20049 This theorem is referenced by:  zndvds  20092
 Copyright terms: Public domain W3C validator