MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znzrhfo Structured version   Visualization version   GIF version

Theorem znzrhfo 20098
Description: The ring homomorphism is a surjection onto ℤ / 𝑛. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
znzrhfo.y 𝑌 = (ℤ/nℤ‘𝑁)
znzrhfo.b 𝐵 = (Base‘𝑌)
znzrhfo.2 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
znzrhfo (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)

Proof of Theorem znzrhfo
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2761 . . . 4 (𝑁 ∈ ℕ0 → (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (ℤring /s (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
2 zringbas 20026 . . . . 5 ℤ = (Base‘ℤring)
32a1i 11 . . . 4 (𝑁 ∈ ℕ0 → ℤ = (Base‘ℤring))
4 eqid 2760 . . . 4 (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
5 ovexd 6843 . . . 4 (𝑁 ∈ ℕ0 → (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) ∈ V)
6 zringring 20023 . . . . 5 ring ∈ Ring
76a1i 11 . . . 4 (𝑁 ∈ ℕ0 → ℤring ∈ Ring)
81, 3, 4, 5, 7quslem 16405 . . 3 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→(ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
9 eqid 2760 . . . . . 6 (RSpan‘ℤring) = (RSpan‘ℤring)
10 znzrhfo.y . . . . . 6 𝑌 = (ℤ/nℤ‘𝑁)
11 eqid 2760 . . . . . 6 (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))
129, 10, 11znbas 20094 . . . . 5 (𝑁 ∈ ℕ0 → (ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = (Base‘𝑌))
13 znzrhfo.b . . . . 5 𝐵 = (Base‘𝑌)
1412, 13syl6eqr 2812 . . . 4 (𝑁 ∈ ℕ0 → (ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = 𝐵)
15 foeq3 6274 . . . 4 ((ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) = 𝐵 → ((𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→(ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵))
1614, 15syl 17 . . 3 (𝑁 ∈ ℕ0 → ((𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto→(ℤ / (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵))
178, 16mpbid 222 . 2 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵)
18 znzrhfo.2 . . . 4 𝐿 = (ℤRHom‘𝑌)
199, 11, 10, 18znzrh2 20096 . . 3 (𝑁 ∈ ℕ0𝐿 = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
20 foeq1 6272 . . 3 (𝐿 = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))) → (𝐿:ℤ–onto𝐵 ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵))
2119, 20syl 17 . 2 (𝑁 ∈ ℕ0 → (𝐿:ℤ–onto𝐵 ↔ (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))):ℤ–onto𝐵))
2217, 21mpbird 247 1 (𝑁 ∈ ℕ0𝐿:ℤ–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wcel 2139  Vcvv 3340  {csn 4321  cmpt 4881  ontowfo 6047  cfv 6049  (class class class)co 6813  [cec 7909   / cqs 7910  0cn0 11484  cz 11569  Basecbs 16059   /s cqus 16367   ~QG cqg 17791  Ringcrg 18747  RSpancrsp 19373  ringzring 20020  ℤRHomczrh 20050  ℤ/nczn 20053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-ec 7913  df-qs 7917  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-fz 12520  df-seq 12996  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-0g 16304  df-imas 16370  df-qus 16371  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-grp 17626  df-minusg 17627  df-sbg 17628  df-mulg 17742  df-subg 17792  df-nsg 17793  df-eqg 17794  df-ghm 17859  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-oppr 18823  df-rnghom 18917  df-subrg 18980  df-lmod 19067  df-lss 19135  df-lsp 19174  df-sra 19374  df-rgmod 19375  df-lidl 19376  df-rsp 19377  df-2idl 19434  df-cnfld 19949  df-zring 20021  df-zrh 20054  df-zn 20057
This theorem is referenced by:  zncyg  20099  znf1o  20102  zzngim  20103  znfld  20111  znunit  20114  znrrg  20116  cygznlem2a  20118  cygznlem3  20120  dchrelbas4  25167  dchrzrhcl  25169  lgsdchrval  25278  lgsdchr  25279  rpvmasumlem  25375  dchrmusum2  25382  dchrvmasumlem3  25387  dchrisum0ff  25395  dchrisum0flblem1  25396  rpvmasum2  25400  dchrisum0re  25401  dchrisum0lem2a  25405  dirith  25417
  Copyright terms: Public domain W3C validator