MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znzrh2 Structured version   Visualization version   GIF version

Theorem znzrh2 20109
Description: The ring homomorphism maps elements to their equivalence classes. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znzrh2.s 𝑆 = (RSpan‘ℤring)
znzrh2.r = (ℤring ~QG (𝑆‘{𝑁}))
znzrh2.y 𝑌 = (ℤ/nℤ‘𝑁)
znzrh2.2 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
znzrh2 (𝑁 ∈ ℕ0𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ))
Distinct variable groups:   𝑥,𝑁   𝑥,   𝑥,𝑆
Allowed substitution hints:   𝐿(𝑥)   𝑌(𝑥)

Proof of Theorem znzrh2
StepHypRef Expression
1 znzrh2.2 . 2 𝐿 = (ℤRHom‘𝑌)
2 zringring 20036 . . . . 5 ring ∈ Ring
3 nn0z 11607 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
4 znzrh2.s . . . . . . 7 𝑆 = (RSpan‘ℤring)
54znlidl 20096 . . . . . 6 (𝑁 ∈ ℤ → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring))
63, 5syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring))
7 znzrh2.r . . . . . . 7 = (ℤring ~QG (𝑆‘{𝑁}))
87oveq2i 6807 . . . . . 6 (ℤring /s ) = (ℤring /s (ℤring ~QG (𝑆‘{𝑁})))
9 zringcrng 20035 . . . . . . 7 ring ∈ CRing
10 eqid 2771 . . . . . . . 8 (LIdeal‘ℤring) = (LIdeal‘ℤring)
1110crng2idl 19454 . . . . . . 7 (ℤring ∈ CRing → (LIdeal‘ℤring) = (2Ideal‘ℤring))
129, 11ax-mp 5 . . . . . 6 (LIdeal‘ℤring) = (2Ideal‘ℤring)
13 zringbas 20039 . . . . . 6 ℤ = (Base‘ℤring)
14 eceq2 7940 . . . . . . . 8 ( = (ℤring ~QG (𝑆‘{𝑁})) → [𝑥] = [𝑥](ℤring ~QG (𝑆‘{𝑁})))
157, 14ax-mp 5 . . . . . . 7 [𝑥] = [𝑥](ℤring ~QG (𝑆‘{𝑁}))
1615mpteq2i 4876 . . . . . 6 (𝑥 ∈ ℤ ↦ [𝑥] ) = (𝑥 ∈ ℤ ↦ [𝑥](ℤring ~QG (𝑆‘{𝑁})))
178, 12, 13, 16qusrhm 19452 . . . . 5 ((ℤring ∈ Ring ∧ (𝑆‘{𝑁}) ∈ (LIdeal‘ℤring)) → (𝑥 ∈ ℤ ↦ [𝑥] ) ∈ (ℤring RingHom (ℤring /s )))
182, 6, 17sylancr 575 . . . 4 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥] ) ∈ (ℤring RingHom (ℤring /s )))
194, 8zncrng2 20097 . . . . 5 (𝑁 ∈ ℤ → (ℤring /s ) ∈ CRing)
20 crngring 18766 . . . . 5 ((ℤring /s ) ∈ CRing → (ℤring /s ) ∈ Ring)
21 eqid 2771 . . . . . 6 (ℤRHom‘(ℤring /s )) = (ℤRHom‘(ℤring /s ))
2221zrhrhmb 20074 . . . . 5 ((ℤring /s ) ∈ Ring → ((𝑥 ∈ ℤ ↦ [𝑥] ) ∈ (ℤring RingHom (ℤring /s )) ↔ (𝑥 ∈ ℤ ↦ [𝑥] ) = (ℤRHom‘(ℤring /s ))))
233, 19, 20, 224syl 19 . . . 4 (𝑁 ∈ ℕ0 → ((𝑥 ∈ ℤ ↦ [𝑥] ) ∈ (ℤring RingHom (ℤring /s )) ↔ (𝑥 ∈ ℤ ↦ [𝑥] ) = (ℤRHom‘(ℤring /s ))))
2418, 23mpbid 222 . . 3 (𝑁 ∈ ℕ0 → (𝑥 ∈ ℤ ↦ [𝑥] ) = (ℤRHom‘(ℤring /s )))
25 znzrh2.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
264, 8, 25znzrh 20106 . . 3 (𝑁 ∈ ℕ0 → (ℤRHom‘(ℤring /s )) = (ℤRHom‘𝑌))
2724, 26eqtr2d 2806 . 2 (𝑁 ∈ ℕ0 → (ℤRHom‘𝑌) = (𝑥 ∈ ℤ ↦ [𝑥] ))
281, 27syl5eq 2817 1 (𝑁 ∈ ℕ0𝐿 = (𝑥 ∈ ℤ ↦ [𝑥] ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1631  wcel 2145  {csn 4317  cmpt 4864  cfv 6030  (class class class)co 6796  [cec 7898  0cn0 11499  cz 11584   /s cqus 16373   ~QG cqg 17798  Ringcrg 18755  CRingccrg 18756   RingHom crh 18922  LIdealclidl 19385  RSpancrsp 19386  2Idealc2idl 19446  ringzring 20033  ℤRHomczrh 20063  ℤ/nczn 20066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-tpos 7508  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-ec 7902  df-qs 7906  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-inf 8509  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-fz 12534  df-seq 13009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-0g 16310  df-imas 16376  df-qus 16377  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mulg 17749  df-subg 17799  df-nsg 17800  df-eqg 17801  df-ghm 17866  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-oppr 18831  df-rnghom 18925  df-subrg 18988  df-lmod 19075  df-lss 19143  df-lsp 19185  df-sra 19387  df-rgmod 19388  df-lidl 19389  df-rsp 19390  df-2idl 19447  df-cnfld 19962  df-zring 20034  df-zrh 20067  df-zn 20070
This theorem is referenced by:  znzrhval  20110  znzrhfo  20111
  Copyright terms: Public domain W3C validator