MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znunit Structured version   Visualization version   GIF version

Theorem znunit 20135
Description: The units of ℤ/n are the integers coprime to the base. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
znchr.y 𝑌 = (ℤ/nℤ‘𝑁)
znunit.u 𝑈 = (Unit‘𝑌)
znunit.l 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
znunit ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1))

Proof of Theorem znunit
Dummy variables 𝑚 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znchr.y . . . . 5 𝑌 = (ℤ/nℤ‘𝑁)
21zncrng 20116 . . . 4 (𝑁 ∈ ℕ0𝑌 ∈ CRing)
32adantr 472 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑌 ∈ CRing)
4 znunit.u . . . 4 𝑈 = (Unit‘𝑌)
5 eqid 2761 . . . 4 (1r𝑌) = (1r𝑌)
6 eqid 2761 . . . 4 (∥r𝑌) = (∥r𝑌)
74, 5, 6crngunit 18883 . . 3 (𝑌 ∈ CRing → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐿𝐴)(∥r𝑌)(1r𝑌)))
83, 7syl 17 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐿𝐴)(∥r𝑌)(1r𝑌)))
9 eqid 2761 . . . . . . 7 (Base‘𝑌) = (Base‘𝑌)
10 znunit.l . . . . . . 7 𝐿 = (ℤRHom‘𝑌)
111, 9, 10znzrhfo 20119 . . . . . 6 (𝑁 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑌))
1211adantr 472 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐿:ℤ–onto→(Base‘𝑌))
13 fof 6278 . . . . 5 (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿:ℤ⟶(Base‘𝑌))
1412, 13syl 17 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐿:ℤ⟶(Base‘𝑌))
15 ffvelrn 6522 . . . 4 ((𝐿:ℤ⟶(Base‘𝑌) ∧ 𝐴 ∈ ℤ) → (𝐿𝐴) ∈ (Base‘𝑌))
1614, 15sylancom 704 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐿𝐴) ∈ (Base‘𝑌))
17 eqid 2761 . . . 4 (.r𝑌) = (.r𝑌)
189, 6, 17dvdsr2 18868 . . 3 ((𝐿𝐴) ∈ (Base‘𝑌) → ((𝐿𝐴)(∥r𝑌)(1r𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
1916, 18syl 17 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴)(∥r𝑌)(1r𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
20 forn 6281 . . . . . 6 (𝐿:ℤ–onto→(Base‘𝑌) → ran 𝐿 = (Base‘𝑌))
2112, 20syl 17 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ran 𝐿 = (Base‘𝑌))
2221rexeqdv 3285 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ ran 𝐿(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
23 ffn 6207 . . . . 5 (𝐿:ℤ⟶(Base‘𝑌) → 𝐿 Fn ℤ)
24 oveq1 6822 . . . . . . 7 (𝑥 = (𝐿𝑛) → (𝑥(.r𝑌)(𝐿𝐴)) = ((𝐿𝑛)(.r𝑌)(𝐿𝐴)))
2524eqeq1d 2763 . . . . . 6 (𝑥 = (𝐿𝑛) → ((𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
2625rexrn 6526 . . . . 5 (𝐿 Fn ℤ → (∃𝑥 ∈ ran 𝐿(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
2714, 23, 263syl 18 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ ran 𝐿(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
2822, 27bitr3d 270 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
29 crngring 18779 . . . . . . . . . 10 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
303, 29syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑌 ∈ Ring)
3110zrhrhm 20083 . . . . . . . . 9 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
3230, 31syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐿 ∈ (ℤring RingHom 𝑌))
3332adantr 472 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝐿 ∈ (ℤring RingHom 𝑌))
34 simpr 479 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
35 simplr 809 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝐴 ∈ ℤ)
36 zringbas 20047 . . . . . . . 8 ℤ = (Base‘ℤring)
37 zringmulr 20050 . . . . . . . 8 · = (.r‘ℤring)
3836, 37, 17rhmmul 18950 . . . . . . 7 ((𝐿 ∈ (ℤring RingHom 𝑌) ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝐿‘(𝑛 · 𝐴)) = ((𝐿𝑛)(.r𝑌)(𝐿𝐴)))
3933, 34, 35, 38syl3anc 1477 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐿‘(𝑛 · 𝐴)) = ((𝐿𝑛)(.r𝑌)(𝐿𝐴)))
4030adantr 472 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑌 ∈ Ring)
4110, 5zrh1 20084 . . . . . . 7 (𝑌 ∈ Ring → (𝐿‘1) = (1r𝑌))
4240, 41syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝐿‘1) = (1r𝑌))
4339, 42eqeq12d 2776 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌)))
44 simpll 807 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℕ0)
4534, 35zmulcld 11701 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (𝑛 · 𝐴) ∈ ℤ)
46 1zzd 11621 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → 1 ∈ ℤ)
471, 10zndvds 20121 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈ ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
4844, 45, 46, 47syl3anc 1477 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → ((𝐿‘(𝑛 · 𝐴)) = (𝐿‘1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
4943, 48bitr3d 270 . . . 4 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
5049rexbidva 3188 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ ((𝐿𝑛)(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
51 simplr 809 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝐴 ∈ ℤ)
52 nn0z 11613 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
5352ad2antrr 764 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∈ ℤ)
54 gcddvds 15448 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁))
5551, 53, 54syl2anc 696 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 ∧ (𝐴 gcd 𝑁) ∥ 𝑁))
5655simpld 477 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝐴)
5751, 53gcdcld 15453 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈ ℕ0)
5857nn0zd 11693 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∈ ℤ)
5934adantrr 755 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑛 ∈ ℤ)
60 dvdsmultr2 15244 . . . . . . . . 9 (((𝐴 gcd 𝑁) ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴)))
6158, 59, 51, 60syl3anc 1477 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 𝐴 → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴)))
6256, 61mpd 15 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴))
6345adantrr 755 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝑛 · 𝐴) ∈ ℤ)
64 1zzd 11621 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 1 ∈ ℤ)
6555simprd 482 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 𝑁)
66 simprr 813 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → 𝑁 ∥ ((𝑛 · 𝐴) − 1))
67 peano2zm 11633 . . . . . . . . . . 11 ((𝑛 · 𝐴) ∈ ℤ → ((𝑛 · 𝐴) − 1) ∈ ℤ)
6863, 67syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝑛 · 𝐴) − 1) ∈ ℤ)
69 dvdstr 15241 . . . . . . . . . 10 (((𝐴 gcd 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ((𝑛 · 𝐴) − 1) ∈ ℤ) → (((𝐴 gcd 𝑁) ∥ 𝑁𝑁 ∥ ((𝑛 · 𝐴) − 1)) → (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)))
7058, 53, 68, 69syl3anc 1477 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (((𝐴 gcd 𝑁) ∥ 𝑁𝑁 ∥ ((𝑛 · 𝐴) − 1)) → (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)))
7165, 66, 70mp2and 717 . . . . . . . 8 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1))
72 dvdssub2 15246 . . . . . . . 8 ((((𝐴 gcd 𝑁) ∈ ℤ ∧ (𝑛 · 𝐴) ∈ ℤ ∧ 1 ∈ ℤ) ∧ (𝐴 gcd 𝑁) ∥ ((𝑛 · 𝐴) − 1)) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1))
7358, 63, 64, 71, 72syl31anc 1480 . . . . . . 7 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ (𝑛 · 𝐴) ↔ (𝐴 gcd 𝑁) ∥ 1))
7462, 73mpbid 222 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) ∥ 1)
75 dvds1 15264 . . . . . . 7 ((𝐴 gcd 𝑁) ∈ ℕ0 → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1))
7657, 75syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → ((𝐴 gcd 𝑁) ∥ 1 ↔ (𝐴 gcd 𝑁) = 1))
7774, 76mpbid 222 . . . . 5 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ (𝑛 ∈ ℤ ∧ 𝑁 ∥ ((𝑛 · 𝐴) − 1))) → (𝐴 gcd 𝑁) = 1)
7877rexlimdvaa 3171 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) → (𝐴 gcd 𝑁) = 1))
79 simpr 479 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝐴 ∈ ℤ)
8052adantr 472 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → 𝑁 ∈ ℤ)
81 bezout 15483 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))
8279, 80, 81syl2anc 696 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)))
83 eqeq1 2765 . . . . . . 7 ((𝐴 gcd 𝑁) = 1 → ((𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
84832rexbidv 3196 . . . . . 6 ((𝐴 gcd 𝑁) = 1 → (∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ (𝐴 gcd 𝑁) = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) ↔ ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
8582, 84syl5ibcom 235 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
8652ad3antrrr 768 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∈ ℤ)
87 dvdsmul1 15226 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑚))
8886, 87sylancom 704 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑚))
89 zmulcl 11639 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℤ)
9086, 89sylancom 704 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℤ)
91 dvdsnegb 15222 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁 · 𝑚) ∈ ℤ) → (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚)))
9286, 90, 91syl2anc 696 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑁 ∥ (𝑁 · 𝑚) ↔ 𝑁 ∥ -(𝑁 · 𝑚)))
9388, 92mpbid 222 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ -(𝑁 · 𝑚))
9435adantr 472 . . . . . . . . . . . . . . 15 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝐴 ∈ ℤ)
9594zcnd 11696 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝐴 ∈ ℂ)
96 zcn 11595 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
9796ad2antlr 765 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑛 ∈ ℂ)
9895, 97mulcomd 10274 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝐴 · 𝑛) = (𝑛 · 𝐴))
9998oveq1d 6830 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚)))
10097, 95mulcld 10273 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑛 · 𝐴) ∈ ℂ)
10190zcnd 11696 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (𝑁 · 𝑚) ∈ ℂ)
102100, 101subnegd 10612 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − -(𝑁 · 𝑚)) = ((𝑛 · 𝐴) + (𝑁 · 𝑚)))
10399, 102eqtr4d 2798 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝐴 · 𝑛) + (𝑁 · 𝑚)) = ((𝑛 · 𝐴) − -(𝑁 · 𝑚)))
104103oveq2d 6831 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚))))
105101negcld 10592 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → -(𝑁 · 𝑚) ∈ ℂ)
106100, 105nncand 10610 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − ((𝑛 · 𝐴) − -(𝑁 · 𝑚))) = -(𝑁 · 𝑚))
107104, 106eqtrd 2795 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))) = -(𝑁 · 𝑚))
10893, 107breqtrrd 4833 . . . . . . . 8 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
109 oveq2 6823 . . . . . . . . 9 (1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → ((𝑛 · 𝐴) − 1) = ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚))))
110109breq2d 4817 . . . . . . . 8 (1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → (𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ 𝑁 ∥ ((𝑛 · 𝐴) − ((𝐴 · 𝑛) + (𝑁 · 𝑚)))))
111108, 110syl5ibrcom 237 . . . . . . 7 ((((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) ∧ 𝑚 ∈ ℤ) → (1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
112111rexlimdva 3170 . . . . . 6 (((𝑁 ∈ ℕ0𝐴 ∈ ℤ) ∧ 𝑛 ∈ ℤ) → (∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
113112reximdva 3156 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ ∃𝑚 ∈ ℤ 1 = ((𝐴 · 𝑛) + (𝑁 · 𝑚)) → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
11485, 113syld 47 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐴 gcd 𝑁) = 1 → ∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1)))
11578, 114impbid 202 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑛 ∈ ℤ 𝑁 ∥ ((𝑛 · 𝐴) − 1) ↔ (𝐴 gcd 𝑁) = 1))
11628, 50, 1153bitrd 294 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (∃𝑥 ∈ (Base‘𝑌)(𝑥(.r𝑌)(𝐿𝐴)) = (1r𝑌) ↔ (𝐴 gcd 𝑁) = 1))
1178, 19, 1163bitrd 294 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → ((𝐿𝐴) ∈ 𝑈 ↔ (𝐴 gcd 𝑁) = 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2140  wrex 3052   class class class wbr 4805  ran crn 5268   Fn wfn 6045  wf 6046  ontowfo 6048  cfv 6050  (class class class)co 6815  cc 10147  1c1 10150   + caddc 10152   · cmul 10154  cmin 10479  -cneg 10480  0cn0 11505  cz 11590  cdvds 15203   gcd cgcd 15439  Basecbs 16080  .rcmulr 16165  1rcur 18722  Ringcrg 18768  CRingccrg 18769  rcdsr 18859  Unitcui 18860   RingHom crh 18935  ringzring 20041  ℤRHomczrh 20071  ℤ/nczn 20074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227  ax-addf 10228  ax-mulf 10229
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-tpos 7523  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-ec 7916  df-qs 7920  df-map 8028  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-sup 8516  df-inf 8517  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-rp 12047  df-fz 12541  df-fl 12808  df-mod 12884  df-seq 13017  df-exp 13076  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-dvds 15204  df-gcd 15440  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-0g 16325  df-imas 16391  df-qus 16392  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-mhm 17557  df-grp 17647  df-minusg 17648  df-sbg 17649  df-mulg 17763  df-subg 17813  df-nsg 17814  df-eqg 17815  df-ghm 17880  df-cmn 18416  df-abl 18417  df-mgp 18711  df-ur 18723  df-ring 18770  df-cring 18771  df-oppr 18844  df-dvdsr 18862  df-unit 18863  df-rnghom 18938  df-subrg 19001  df-lmod 19088  df-lss 19156  df-lsp 19195  df-sra 19395  df-rgmod 19396  df-lidl 19397  df-rsp 19398  df-2idl 19455  df-cnfld 19970  df-zring 20042  df-zrh 20075  df-zn 20078
This theorem is referenced by:  znunithash  20136  znrrg  20137  dchrelbas4  25189  lgsdchr  25301  rpvmasumlem  25397  dirith  25439
  Copyright terms: Public domain W3C validator