Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zntoslem Structured version   Visualization version   GIF version

Theorem zntoslem 19953
 Description: Lemma for zntos 19954. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znle2.y 𝑌 = (ℤ/nℤ‘𝑁)
znle2.f 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
znle2.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle2.l = (le‘𝑌)
znleval.x 𝑋 = (Base‘𝑌)
Assertion
Ref Expression
zntoslem (𝑁 ∈ ℕ0𝑌 ∈ Toset)

Proof of Theorem zntoslem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 znle2.y . . . . 5 𝑌 = (ℤ/nℤ‘𝑁)
2 fvex 6239 . . . . 5 (ℤ/nℤ‘𝑁) ∈ V
31, 2eqeltri 2726 . . . 4 𝑌 ∈ V
43a1i 11 . . 3 (𝑁 ∈ ℕ0𝑌 ∈ V)
5 znleval.x . . . 4 𝑋 = (Base‘𝑌)
65a1i 11 . . 3 (𝑁 ∈ ℕ0𝑋 = (Base‘𝑌))
7 znle2.l . . . 4 = (le‘𝑌)
87a1i 11 . . 3 (𝑁 ∈ ℕ0 = (le‘𝑌))
9 znle2.f . . . . . . . . . 10 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
10 znle2.w . . . . . . . . . 10 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
111, 5, 9, 10znf1o 19948 . . . . . . . . 9 (𝑁 ∈ ℕ0𝐹:𝑊1-1-onto𝑋)
12 f1ocnv 6187 . . . . . . . . 9 (𝐹:𝑊1-1-onto𝑋𝐹:𝑋1-1-onto𝑊)
1311, 12syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0𝐹:𝑋1-1-onto𝑊)
14 f1of 6175 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑊𝐹:𝑋𝑊)
1513, 14syl 17 . . . . . . 7 (𝑁 ∈ ℕ0𝐹:𝑋𝑊)
16 sseq1 3659 . . . . . . . . . 10 (ℤ = if(𝑁 = 0, ℤ, (0..^𝑁)) → (ℤ ⊆ ℤ ↔ if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ))
17 sseq1 3659 . . . . . . . . . 10 ((0..^𝑁) = if(𝑁 = 0, ℤ, (0..^𝑁)) → ((0..^𝑁) ⊆ ℤ ↔ if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ))
18 ssid 3657 . . . . . . . . . 10 ℤ ⊆ ℤ
19 elfzoelz 12509 . . . . . . . . . . 11 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
2019ssriv 3640 . . . . . . . . . 10 (0..^𝑁) ⊆ ℤ
2116, 17, 18, 20keephyp 4185 . . . . . . . . 9 if(𝑁 = 0, ℤ, (0..^𝑁)) ⊆ ℤ
2210, 21eqsstri 3668 . . . . . . . 8 𝑊 ⊆ ℤ
23 zssre 11422 . . . . . . . 8 ℤ ⊆ ℝ
2422, 23sstri 3645 . . . . . . 7 𝑊 ⊆ ℝ
25 fss 6094 . . . . . . 7 ((𝐹:𝑋𝑊𝑊 ⊆ ℝ) → 𝐹:𝑋⟶ℝ)
2615, 24, 25sylancl 695 . . . . . 6 (𝑁 ∈ ℕ0𝐹:𝑋⟶ℝ)
2726ffvelrnda 6399 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
2827leidd 10632 . . . 4 ((𝑁 ∈ ℕ0𝑥𝑋) → (𝐹𝑥) ≤ (𝐹𝑥))
291, 9, 10, 7, 5znleval2 19952 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑥𝑋) → (𝑥 𝑥 ↔ (𝐹𝑥) ≤ (𝐹𝑥)))
30293anidm23 1425 . . . 4 ((𝑁 ∈ ℕ0𝑥𝑋) → (𝑥 𝑥 ↔ (𝐹𝑥) ≤ (𝐹𝑥)))
3128, 30mpbird 247 . . 3 ((𝑁 ∈ ℕ0𝑥𝑋) → 𝑥 𝑥)
321, 9, 10, 7, 5znleval2 19952 . . . . . 6 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → (𝑥 𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
331, 9, 10, 7, 5znleval2 19952 . . . . . . 7 ((𝑁 ∈ ℕ0𝑦𝑋𝑥𝑋) → (𝑦 𝑥 ↔ (𝐹𝑦) ≤ (𝐹𝑥)))
34333com23 1291 . . . . . 6 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → (𝑦 𝑥 ↔ (𝐹𝑦) ≤ (𝐹𝑥)))
3532, 34anbi12d 747 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝑥 𝑦𝑦 𝑥) ↔ ((𝐹𝑥) ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ (𝐹𝑥))))
36273adant3 1101 . . . . . 6 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → (𝐹𝑥) ∈ ℝ)
3726ffvelrnda 6399 . . . . . . 7 ((𝑁 ∈ ℕ0𝑦𝑋) → (𝐹𝑦) ∈ ℝ)
38373adant2 1100 . . . . . 6 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → (𝐹𝑦) ∈ ℝ)
3936, 38letri3d 10217 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝐹𝑥) = (𝐹𝑦) ↔ ((𝐹𝑥) ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ (𝐹𝑥))))
40 f1of1 6174 . . . . . . . 8 (𝐹:𝑋1-1-onto𝑊𝐹:𝑋1-1𝑊)
4113, 40syl 17 . . . . . . 7 (𝑁 ∈ ℕ0𝐹:𝑋1-1𝑊)
42 f1fveq 6559 . . . . . . 7 ((𝐹:𝑋1-1𝑊 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
4341, 42sylan 487 . . . . . 6 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
44433impb 1279 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
4535, 39, 443bitr2d 296 . . . 4 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝑥 𝑦𝑦 𝑥) ↔ 𝑥 = 𝑦))
4645biimpd 219 . . 3 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝑥 𝑦𝑦 𝑥) → 𝑥 = 𝑦))
47273ad2antr1 1246 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝐹𝑥) ∈ ℝ)
48373ad2antr2 1247 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝐹𝑦) ∈ ℝ)
4926ffvelrnda 6399 . . . . . 6 ((𝑁 ∈ ℕ0𝑧𝑋) → (𝐹𝑧) ∈ ℝ)
50493ad2antr3 1248 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝐹𝑧) ∈ ℝ)
51 letr 10169 . . . . 5 (((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑦) ∈ ℝ ∧ (𝐹𝑧) ∈ ℝ) → (((𝐹𝑥) ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ (𝐹𝑧)) → (𝐹𝑥) ≤ (𝐹𝑧)))
5247, 48, 50, 51syl3anc 1366 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (((𝐹𝑥) ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ (𝐹𝑧)) → (𝐹𝑥) ≤ (𝐹𝑧)))
53323adant3r3 1297 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
541, 9, 10, 7, 5znleval2 19952 . . . . . 6 ((𝑁 ∈ ℕ0𝑦𝑋𝑧𝑋) → (𝑦 𝑧 ↔ (𝐹𝑦) ≤ (𝐹𝑧)))
55543adant3r1 1295 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑦 𝑧 ↔ (𝐹𝑦) ≤ (𝐹𝑧)))
5653, 55anbi12d 747 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥 𝑦𝑦 𝑧) ↔ ((𝐹𝑥) ≤ (𝐹𝑦) ∧ (𝐹𝑦) ≤ (𝐹𝑧))))
571, 9, 10, 7, 5znleval2 19952 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑧𝑋) → (𝑥 𝑧 ↔ (𝐹𝑥) ≤ (𝐹𝑧)))
58573adant3r2 1296 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → (𝑥 𝑧 ↔ (𝐹𝑥) ≤ (𝐹𝑧)))
5952, 56, 583imtr4d 283 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋𝑧𝑋)) → ((𝑥 𝑦𝑦 𝑧) → 𝑥 𝑧))
604, 6, 8, 31, 46, 59isposd 17002 . 2 (𝑁 ∈ ℕ0𝑌 ∈ Poset)
6136, 38letrid 10227 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝐹𝑥) ≤ (𝐹𝑦) ∨ (𝐹𝑦) ≤ (𝐹𝑥)))
6232, 34orbi12d 746 . . . . 5 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → ((𝑥 𝑦𝑦 𝑥) ↔ ((𝐹𝑥) ≤ (𝐹𝑦) ∨ (𝐹𝑦) ≤ (𝐹𝑥))))
6361, 62mpbird 247 . . . 4 ((𝑁 ∈ ℕ0𝑥𝑋𝑦𝑋) → (𝑥 𝑦𝑦 𝑥))
64633expb 1285 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥 𝑦𝑦 𝑥))
6564ralrimivva 3000 . 2 (𝑁 ∈ ℕ0 → ∀𝑥𝑋𝑦𝑋 (𝑥 𝑦𝑦 𝑥))
665, 7istos 17082 . 2 (𝑌 ∈ Toset ↔ (𝑌 ∈ Poset ∧ ∀𝑥𝑋𝑦𝑋 (𝑥 𝑦𝑦 𝑥)))
6760, 65, 66sylanbrc 699 1 (𝑁 ∈ ℕ0𝑌 ∈ Toset)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∀wral 2941  Vcvv 3231   ⊆ wss 3607  ifcif 4119   class class class wbr 4685  ◡ccnv 5142   ↾ cres 5145  ⟶wf 5922  –1-1→wf1 5923  –1-1-onto→wf1o 5925  ‘cfv 5926  (class class class)co 6690  ℝcr 9973  0cc0 9974   ≤ cle 10113  ℕ0cn0 11330  ℤcz 11415  ..^cfzo 12504  Basecbs 15904  lecple 15995  Posetcpo 16987  Tosetctos 17080  ℤRHomczrh 19896  ℤ/nℤczn 19899 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-ec 7789  df-qs 7793  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-dvds 15028  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-0g 16149  df-imas 16215  df-qus 16216  df-poset 16993  df-toset 17081  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-grp 17472  df-minusg 17473  df-sbg 17474  df-mulg 17588  df-subg 17638  df-nsg 17639  df-eqg 17640  df-ghm 17705  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-rnghom 18763  df-subrg 18826  df-lmod 18913  df-lss 18981  df-lsp 19020  df-sra 19220  df-rgmod 19221  df-lidl 19222  df-rsp 19223  df-2idl 19280  df-cnfld 19795  df-zring 19867  df-zrh 19900  df-zn 19903 This theorem is referenced by:  zntos  19954
 Copyright terms: Public domain W3C validator