![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > znnenlem | Structured version Visualization version GIF version |
Description: Lemma for znnen 15160. (Contributed by NM, 31-Jul-2004.) |
Ref | Expression |
---|---|
znnenlem | ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (2 · 𝑥) = ((-2 · 𝑦) + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zre 11593 | . . . . 5 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℝ) | |
2 | zre 11593 | . . . . 5 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℝ) | |
3 | 0re 10252 | . . . . . . . . . . . 12 ⊢ 0 ∈ ℝ | |
4 | ltnle 10329 | . . . . . . . . . . . 12 ⊢ ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑦 < 0 ↔ ¬ 0 ≤ 𝑦)) | |
5 | 3, 4 | mpan2 709 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ ℝ → (𝑦 < 0 ↔ ¬ 0 ≤ 𝑦)) |
6 | 5 | adantr 472 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 0 ↔ ¬ 0 ≤ 𝑦)) |
7 | 6 | anbi1d 743 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 0 ∧ 0 ≤ 𝑥) ↔ (¬ 0 ≤ 𝑦 ∧ 0 ≤ 𝑥))) |
8 | ltletr 10341 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℝ ∧ 0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 0 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥)) | |
9 | 3, 8 | mp3an2 1561 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦 < 0 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥)) |
10 | 7, 9 | sylbird 250 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((¬ 0 ≤ 𝑦 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥)) |
11 | 10 | ancoms 468 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((¬ 0 ≤ 𝑦 ∧ 0 ≤ 𝑥) → 𝑦 < 𝑥)) |
12 | 11 | ancomsd 469 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) → 𝑦 < 𝑥)) |
13 | ltne 10346 | . . . . . . . 8 ⊢ ((𝑦 ∈ ℝ ∧ 𝑦 < 𝑥) → 𝑥 ≠ 𝑦) | |
14 | 13 | ex 449 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (𝑦 < 𝑥 → 𝑥 ≠ 𝑦)) |
15 | 14 | adantl 473 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 < 𝑥 → 𝑥 ≠ 𝑦)) |
16 | 12, 15 | syld 47 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) → 𝑥 ≠ 𝑦)) |
17 | 1, 2, 16 | syl2an 495 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) → 𝑥 ≠ 𝑦)) |
18 | 17 | impcom 445 | . . 3 ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ≠ 𝑦) |
19 | znegcl 11624 | . . . . . 6 ⊢ (𝑦 ∈ ℤ → -𝑦 ∈ ℤ) | |
20 | zneo 11672 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ -𝑦 ∈ ℤ) → (2 · 𝑥) ≠ ((2 · -𝑦) + 1)) | |
21 | 19, 20 | sylan2 492 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (2 · 𝑥) ≠ ((2 · -𝑦) + 1)) |
22 | 2cn 11303 | . . . . . . . 8 ⊢ 2 ∈ ℂ | |
23 | zcn 11594 | . . . . . . . 8 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
24 | mulneg12 10680 | . . . . . . . 8 ⊢ ((2 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-2 · 𝑦) = (2 · -𝑦)) | |
25 | 22, 23, 24 | sylancr 698 | . . . . . . 7 ⊢ (𝑦 ∈ ℤ → (-2 · 𝑦) = (2 · -𝑦)) |
26 | 25 | adantl 473 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (-2 · 𝑦) = (2 · -𝑦)) |
27 | 26 | oveq1d 6829 | . . . . 5 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((-2 · 𝑦) + 1) = ((2 · -𝑦) + 1)) |
28 | 21, 27 | neeqtrrd 3006 | . . . 4 ⊢ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (2 · 𝑥) ≠ ((-2 · 𝑦) + 1)) |
29 | 28 | adantl 473 | . . 3 ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (2 · 𝑥) ≠ ((-2 · 𝑦) + 1)) |
30 | 18, 29 | 2thd 255 | . 2 ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 ≠ 𝑦 ↔ (2 · 𝑥) ≠ ((-2 · 𝑦) + 1))) |
31 | 30 | necon4bid 2977 | 1 ⊢ (((0 ≤ 𝑥 ∧ ¬ 0 ≤ 𝑦) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 = 𝑦 ↔ (2 · 𝑥) = ((-2 · 𝑦) + 1))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 class class class wbr 4804 (class class class)co 6814 ℂcc 10146 ℝcr 10147 0cc0 10148 1c1 10149 + caddc 10151 · cmul 10153 < clt 10286 ≤ cle 10287 -cneg 10479 2c2 11282 ℤcz 11589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-n0 11505 df-z 11590 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |