MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znleval2 Structured version   Visualization version   GIF version

Theorem znleval2 20126
Description: The ordering of the ℤ/n structure. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
znle2.y 𝑌 = (ℤ/nℤ‘𝑁)
znle2.f 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
znle2.w 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
znle2.l = (le‘𝑌)
znleval.x 𝑋 = (Base‘𝑌)
Assertion
Ref Expression
znleval2 ((𝑁 ∈ ℕ0𝐴𝑋𝐵𝑋) → (𝐴 𝐵 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))

Proof of Theorem znleval2
StepHypRef Expression
1 znle2.y . . . 4 𝑌 = (ℤ/nℤ‘𝑁)
2 znle2.f . . . 4 𝐹 = ((ℤRHom‘𝑌) ↾ 𝑊)
3 znle2.w . . . 4 𝑊 = if(𝑁 = 0, ℤ, (0..^𝑁))
4 znle2.l . . . 4 = (le‘𝑌)
5 znleval.x . . . 4 𝑋 = (Base‘𝑌)
61, 2, 3, 4, 5znleval 20125 . . 3 (𝑁 ∈ ℕ0 → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
763ad2ant1 1128 . 2 ((𝑁 ∈ ℕ0𝐴𝑋𝐵𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
8 3simpc 1147 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋𝐵𝑋) → (𝐴𝑋𝐵𝑋))
98biantrurd 530 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋𝐵𝑋) → ((𝐹𝐴) ≤ (𝐹𝐵) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
10 df-3an 1074 . . 3 ((𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵)) ↔ ((𝐴𝑋𝐵𝑋) ∧ (𝐹𝐴) ≤ (𝐹𝐵)))
119, 10syl6bbr 278 . 2 ((𝑁 ∈ ℕ0𝐴𝑋𝐵𝑋) → ((𝐹𝐴) ≤ (𝐹𝐵) ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐹𝐴) ≤ (𝐹𝐵))))
127, 11bitr4d 271 1 ((𝑁 ∈ ℕ0𝐴𝑋𝐵𝑋) → (𝐴 𝐵 ↔ (𝐹𝐴) ≤ (𝐹𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  ifcif 4230   class class class wbr 4804  ccnv 5265  cres 5268  cfv 6049  (class class class)co 6814  0cc0 10148  cle 10287  0cn0 11504  cz 11589  ..^cfzo 12679  Basecbs 16079  lecple 16170  ℤRHomczrh 20070  ℤ/nczn 20073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-ec 7915  df-qs 7919  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-inf 8516  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-rp 12046  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-dvds 15203  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-0g 16324  df-imas 16390  df-qus 16391  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-mhm 17556  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-subg 17812  df-nsg 17813  df-eqg 17814  df-ghm 17879  df-cmn 18415  df-abl 18416  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-oppr 18843  df-dvdsr 18861  df-rnghom 18937  df-subrg 19000  df-lmod 19087  df-lss 19155  df-lsp 19194  df-sra 19394  df-rgmod 19395  df-lidl 19396  df-rsp 19397  df-2idl 19454  df-cnfld 19969  df-zring 20041  df-zrh 20074  df-zn 20077
This theorem is referenced by:  zntoslem  20127
  Copyright terms: Public domain W3C validator