MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zndvds Structured version   Visualization version   GIF version

Theorem zndvds 20071
Description: Express equality of equivalence classes in ℤ / 𝑛 in terms of divisibility. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
zncyg.y 𝑌 = (ℤ/nℤ‘𝑁)
zndvds.2 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
zndvds ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐴) = (𝐿𝐵) ↔ 𝑁 ∥ (𝐴𝐵)))

Proof of Theorem zndvds
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqcom 2755 . 2 ((𝐿𝐴) = (𝐿𝐵) ↔ (𝐿𝐵) = (𝐿𝐴))
2 eqid 2748 . . . . . 6 (RSpan‘ℤring) = (RSpan‘ℤring)
3 eqid 2748 . . . . . 6 (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = (ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))
4 zncyg.y . . . . . 6 𝑌 = (ℤ/nℤ‘𝑁)
5 zndvds.2 . . . . . 6 𝐿 = (ℤRHom‘𝑌)
62, 3, 4, 5znzrhval 20068 . . . . 5 ((𝑁 ∈ ℕ0𝐵 ∈ ℤ) → (𝐿𝐵) = [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
763adant2 1123 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐿𝐵) = [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
82, 3, 4, 5znzrhval 20068 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ) → (𝐿𝐴) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
983adant3 1124 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐿𝐴) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})))
107, 9eqeq12d 2763 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐵) = (𝐿𝐴) ↔ [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
11 zringring 19994 . . . . . 6 ring ∈ Ring
12 nn0z 11563 . . . . . . . . 9 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
13123ad2ant1 1125 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝑁 ∈ ℤ)
1413snssd 4473 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → {𝑁} ⊆ ℤ)
15 zringbas 19997 . . . . . . . 8 ℤ = (Base‘ℤring)
16 eqid 2748 . . . . . . . 8 (LIdeal‘ℤring) = (LIdeal‘ℤring)
172, 15, 16rspcl 19395 . . . . . . 7 ((ℤring ∈ Ring ∧ {𝑁} ⊆ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
1811, 14, 17sylancr 698 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring))
1916lidlsubg 19388 . . . . . 6 ((ℤring ∈ Ring ∧ ((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring)) → ((RSpan‘ℤring)‘{𝑁}) ∈ (SubGrp‘ℤring))
2011, 18, 19sylancr 698 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ∈ (SubGrp‘ℤring))
2115, 3eqger 17816 . . . . 5 (((RSpan‘ℤring)‘{𝑁}) ∈ (SubGrp‘ℤring) → (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) Er ℤ)
2220, 21syl 17 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) Er ℤ)
23 simp3 1130 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐵 ∈ ℤ)
2422, 23erth 7946 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ [𝐵](ℤring ~QG ((RSpan‘ℤring)‘{𝑁})) = [𝐴](ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))))
25 zringabl 19995 . . . . 5 ring ∈ Abel
2615, 16lidlss 19383 . . . . . 6 (((RSpan‘ℤring)‘{𝑁}) ∈ (LIdeal‘ℤring) → ((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ)
2718, 26syl 17 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ)
28 eqid 2748 . . . . . 6 (-g‘ℤring) = (-g‘ℤring)
2915, 28, 3eqgabl 18411 . . . . 5 ((ℤring ∈ Abel ∧ ((RSpan‘ℤring)‘{𝑁}) ⊆ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
3025, 27, 29sylancr 698 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴 ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
31 simp2 1129 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℤ)
3223, 31jca 555 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ))
3332biantrurd 530 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
34 df-3an 1074 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁})) ↔ ((𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ) ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁})))
3533, 34syl6bbr 278 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ (𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}))))
36 zsubrg 19972 . . . . . . . . 9 ℤ ∈ (SubRing‘ℂfld)
37 subrgsubg 18959 . . . . . . . . 9 (ℤ ∈ (SubRing‘ℂfld) → ℤ ∈ (SubGrp‘ℂfld))
3836, 37mp1i 13 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ℤ ∈ (SubGrp‘ℂfld))
39 cnfldsub 19947 . . . . . . . . 9 − = (-g‘ℂfld)
40 df-zring 19992 . . . . . . . . 9 ring = (ℂflds ℤ)
4139, 40, 28subgsub 17778 . . . . . . . 8 ((ℤ ∈ (SubGrp‘ℂfld) ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) = (𝐴(-g‘ℤring)𝐵))
4238, 41syld3an1 1509 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵) = (𝐴(-g‘ℤring)𝐵))
4342eqcomd 2754 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴(-g‘ℤring)𝐵) = (𝐴𝐵))
44 dvdsrzring 20004 . . . . . . . 8 ∥ = (∥r‘ℤring)
4515, 2, 44rspsn 19427 . . . . . . 7 ((ℤring ∈ Ring ∧ 𝑁 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) = {𝑥𝑁𝑥})
4611, 13, 45sylancr 698 . . . . . 6 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((RSpan‘ℤring)‘{𝑁}) = {𝑥𝑁𝑥})
4743, 46eleq12d 2821 . . . . 5 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ (𝐴𝐵) ∈ {𝑥𝑁𝑥}))
48 ovex 6829 . . . . . 6 (𝐴𝐵) ∈ V
49 breq2 4796 . . . . . 6 (𝑥 = (𝐴𝐵) → (𝑁𝑥𝑁 ∥ (𝐴𝐵)))
5048, 49elab 3478 . . . . 5 ((𝐴𝐵) ∈ {𝑥𝑁𝑥} ↔ 𝑁 ∥ (𝐴𝐵))
5147, 50syl6bb 276 . . . 4 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴(-g‘ℤring)𝐵) ∈ ((RSpan‘ℤring)‘{𝑁}) ↔ 𝑁 ∥ (𝐴𝐵)))
5230, 35, 513bitr2d 296 . . 3 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐵(ℤring ~QG ((RSpan‘ℤring)‘{𝑁}))𝐴𝑁 ∥ (𝐴𝐵)))
5310, 24, 523bitr2d 296 . 2 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐵) = (𝐿𝐴) ↔ 𝑁 ∥ (𝐴𝐵)))
541, 53syl5bb 272 1 ((𝑁 ∈ ℕ0𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐿𝐴) = (𝐿𝐵) ↔ 𝑁 ∥ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1620  wcel 2127  {cab 2734  wss 3703  {csn 4309   class class class wbr 4792  cfv 6037  (class class class)co 6801   Er wer 7896  [cec 7897  cmin 10429  0cn0 11455  cz 11540  cdvds 15153  -gcsg 17596  SubGrpcsubg 17760   ~QG cqg 17762  Abelcabl 18365  Ringcrg 18718  SubRingcsubrg 18949  LIdealclidl 19343  RSpancrsp 19344  fldccnfld 19919  ringzring 19991  ℤRHomczrh 20021  ℤ/nczn 20024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-addf 10178  ax-mulf 10179
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-tpos 7509  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7899  df-ec 7901  df-qs 7905  df-map 8013  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8501  df-inf 8502  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-n0 11456  df-z 11541  df-dec 11657  df-uz 11851  df-fz 12491  df-seq 12967  df-dvds 15154  df-struct 16032  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-starv 16129  df-sca 16130  df-vsca 16131  df-ip 16132  df-tset 16133  df-ple 16134  df-ds 16137  df-unif 16138  df-0g 16275  df-imas 16341  df-qus 16342  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-mhm 17507  df-grp 17597  df-minusg 17598  df-sbg 17599  df-mulg 17713  df-subg 17763  df-nsg 17764  df-eqg 17765  df-ghm 17830  df-cmn 18366  df-abl 18367  df-mgp 18661  df-ur 18673  df-ring 18720  df-cring 18721  df-oppr 18794  df-dvdsr 18812  df-rnghom 18888  df-subrg 18951  df-lmod 19038  df-lss 19106  df-lsp 19145  df-sra 19345  df-rgmod 19346  df-lidl 19347  df-rsp 19348  df-2idl 19405  df-cnfld 19920  df-zring 19992  df-zrh 20025  df-zn 20028
This theorem is referenced by:  zndvds0  20072  znf1o  20073  znunit  20085  cygznlem1  20088  lgsqrlem1  25241  lgsqrlem2  25242  lgsqrlem4  25244  lgsdchrval  25249  lgseisenlem3  25272  lgseisenlem4  25273  dchrisumlem1  25348  dirith  25388
  Copyright terms: Public domain W3C validator