MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zmax Structured version   Visualization version   GIF version

Theorem zmax 11823
Description: There is a unique largest integer less than or equal to a given real number. (Contributed by NM, 15-Nov-2004.)
Assertion
Ref Expression
zmax (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem zmax
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 renegcl 10382 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
2 zmin 11822 . . 3 (-𝐴 ∈ ℝ → ∃!𝑧 ∈ ℤ (-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)))
31, 2syl 17 . 2 (𝐴 ∈ ℝ → ∃!𝑧 ∈ ℤ (-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)))
4 zre 11419 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℝ)
5 leneg 10569 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
64, 5sylan 487 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
76ancoms 468 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑥𝐴 ↔ -𝐴 ≤ -𝑥))
8 znegcl 11450 . . . . . . . . . 10 (𝑤 ∈ ℤ → -𝑤 ∈ ℤ)
9 breq1 4688 . . . . . . . . . . . 12 (𝑦 = -𝑤 → (𝑦𝐴 ↔ -𝑤𝐴))
10 breq1 4688 . . . . . . . . . . . 12 (𝑦 = -𝑤 → (𝑦𝑥 ↔ -𝑤𝑥))
119, 10imbi12d 333 . . . . . . . . . . 11 (𝑦 = -𝑤 → ((𝑦𝐴𝑦𝑥) ↔ (-𝑤𝐴 → -𝑤𝑥)))
1211rspcv 3336 . . . . . . . . . 10 (-𝑤 ∈ ℤ → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → (-𝑤𝐴 → -𝑤𝑥)))
138, 12syl 17 . . . . . . . . 9 (𝑤 ∈ ℤ → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → (-𝑤𝐴 → -𝑤𝑥)))
14 zre 11419 . . . . . . . . . . . . 13 (𝑤 ∈ ℤ → 𝑤 ∈ ℝ)
15 lenegcon1 10570 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (-𝑤𝐴 ↔ -𝐴𝑤))
1615adantrr 753 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (-𝑤𝐴 ↔ -𝐴𝑤))
17 lenegcon1 10570 . . . . . . . . . . . . . . . 16 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (-𝑤𝑥 ↔ -𝑥𝑤))
184, 17sylan2 490 . . . . . . . . . . . . . . 15 ((𝑤 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝑤𝑥 ↔ -𝑥𝑤))
1918adantrl 752 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (-𝑤𝑥 ↔ -𝑥𝑤))
2016, 19imbi12d 333 . . . . . . . . . . . . 13 ((𝑤 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((-𝑤𝐴 → -𝑤𝑥) ↔ (-𝐴𝑤 → -𝑥𝑤)))
2114, 20sylan 487 . . . . . . . . . . . 12 ((𝑤 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((-𝑤𝐴 → -𝑤𝑥) ↔ (-𝐴𝑤 → -𝑥𝑤)))
2221biimpd 219 . . . . . . . . . . 11 ((𝑤 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((-𝑤𝐴 → -𝑤𝑥) → (-𝐴𝑤 → -𝑥𝑤)))
2322ex 449 . . . . . . . . . 10 (𝑤 ∈ ℤ → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝑤𝐴 → -𝑤𝑥) → (-𝐴𝑤 → -𝑥𝑤))))
2423com23 86 . . . . . . . . 9 (𝑤 ∈ ℤ → ((-𝑤𝐴 → -𝑤𝑥) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝐴𝑤 → -𝑥𝑤))))
2513, 24syld 47 . . . . . . . 8 (𝑤 ∈ ℤ → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-𝐴𝑤 → -𝑥𝑤))))
2625com13 88 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → (𝑤 ∈ ℤ → (-𝐴𝑤 → -𝑥𝑤))))
2726ralrimdv 2997 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) → ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤)))
28 znegcl 11450 . . . . . . . . . 10 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
29 breq2 4689 . . . . . . . . . . . 12 (𝑤 = -𝑦 → (-𝐴𝑤 ↔ -𝐴 ≤ -𝑦))
30 breq2 4689 . . . . . . . . . . . 12 (𝑤 = -𝑦 → (-𝑥𝑤 ↔ -𝑥 ≤ -𝑦))
3129, 30imbi12d 333 . . . . . . . . . . 11 (𝑤 = -𝑦 → ((-𝐴𝑤 → -𝑥𝑤) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
3231rspcv 3336 . . . . . . . . . 10 (-𝑦 ∈ ℤ → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
3328, 32syl 17 . . . . . . . . 9 (𝑦 ∈ ℤ → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
34 zre 11419 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → 𝑦 ∈ ℝ)
35 leneg 10569 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑦𝐴 ↔ -𝐴 ≤ -𝑦))
3635adantrr 753 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (𝑦𝐴 ↔ -𝐴 ≤ -𝑦))
37 leneg 10569 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦𝑥 ↔ -𝑥 ≤ -𝑦))
384, 37sylan2 490 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦𝑥 ↔ -𝑥 ≤ -𝑦))
3938adantrl 752 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → (𝑦𝑥 ↔ -𝑥 ≤ -𝑦))
4036, 39imbi12d 333 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((𝑦𝐴𝑦𝑥) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
4134, 40sylan 487 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ (𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ)) → ((𝑦𝐴𝑦𝑥) ↔ (-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦)))
4241exbiri 651 . . . . . . . . . 10 (𝑦 ∈ ℤ → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦) → (𝑦𝐴𝑦𝑥))))
4342com23 86 . . . . . . . . 9 (𝑦 ∈ ℤ → ((-𝐴 ≤ -𝑦 → -𝑥 ≤ -𝑦) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦𝐴𝑦𝑥))))
4433, 43syld 47 . . . . . . . 8 (𝑦 ∈ ℤ → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑦𝐴𝑦𝑥))))
4544com13 88 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → (𝑦 ∈ ℤ → (𝑦𝐴𝑦𝑥))))
4645ralrimdv 2997 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤) → ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)))
4727, 46impbid 202 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥) ↔ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤)))
487, 47anbi12d 747 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)) ↔ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤))))
4948reubidva 3155 . . 3 (𝐴 ∈ ℝ → (∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤))))
50 znegcl 11450 . . . 4 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
51 znegcl 11450 . . . . 5 (𝑧 ∈ ℤ → -𝑧 ∈ ℤ)
52 zcn 11420 . . . . . 6 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
53 zcn 11420 . . . . . 6 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
54 negcon2 10372 . . . . . 6 ((𝑧 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑧 = -𝑥𝑥 = -𝑧))
5552, 53, 54syl2an 493 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑧 = -𝑥𝑥 = -𝑧))
5651, 55reuhyp 4926 . . . 4 (𝑧 ∈ ℤ → ∃!𝑥 ∈ ℤ 𝑧 = -𝑥)
57 breq2 4689 . . . . 5 (𝑧 = -𝑥 → (-𝐴𝑧 ↔ -𝐴 ≤ -𝑥))
58 breq1 4688 . . . . . . 7 (𝑧 = -𝑥 → (𝑧𝑤 ↔ -𝑥𝑤))
5958imbi2d 329 . . . . . 6 (𝑧 = -𝑥 → ((-𝐴𝑤𝑧𝑤) ↔ (-𝐴𝑤 → -𝑥𝑤)))
6059ralbidv 3015 . . . . 5 (𝑧 = -𝑥 → (∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤) ↔ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤)))
6157, 60anbi12d 747 . . . 4 (𝑧 = -𝑥 → ((-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)) ↔ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤))))
6250, 56, 61reuxfr 4924 . . 3 (∃!𝑧 ∈ ℤ (-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)) ↔ ∃!𝑥 ∈ ℤ (-𝐴 ≤ -𝑥 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤 → -𝑥𝑤)))
6349, 62syl6rbbr 279 . 2 (𝐴 ∈ ℝ → (∃!𝑧 ∈ ℤ (-𝐴𝑧 ∧ ∀𝑤 ∈ ℤ (-𝐴𝑤𝑧𝑤)) ↔ ∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥))))
643, 63mpbid 222 1 (𝐴 ∈ ℝ → ∃!𝑥 ∈ ℤ (𝑥𝐴 ∧ ∀𝑦 ∈ ℤ (𝑦𝐴𝑦𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  ∃!wreu 2943   class class class wbr 4685  cc 9972  cr 9973  cle 10113  -cneg 10305  cz 11415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726
This theorem is referenced by:  flval2  12655
  Copyright terms: Public domain W3C validator