Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzldeplem3 Structured version   Visualization version   GIF version

Theorem zlmodzxzldeplem3 42820
 Description: Lemma 3 for zlmodzxzldep 42822. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzldeplem.f 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
Assertion
Ref Expression
zlmodzxzldeplem3 (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍)

Proof of Theorem zlmodzxzldeplem3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 zlmodzxzldep.z . . . 4 𝑍 = (ℤring freeLMod {0, 1})
2 ovex 6843 . . . 4 (ℤring freeLMod {0, 1}) ∈ V
31, 2eqeltri 2836 . . 3 𝑍 ∈ V
4 zlmodzxzldep.a . . . . 5 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
5 zlmodzxzldep.b . . . . 5 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
6 zlmodzxzldeplem.f . . . . 5 𝐹 = {⟨𝐴, 2⟩, ⟨𝐵, -3⟩}
71, 4, 5, 6zlmodzxzldeplem1 42818 . . . 4 𝐹 ∈ (ℤ ↑𝑚 {𝐴, 𝐵})
81zlmodzxzlmod 42661 . . . . . . . 8 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
9 simpr 479 . . . . . . . . 9 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → ℤring = (Scalar‘𝑍))
109eqcomd 2767 . . . . . . . 8 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → (Scalar‘𝑍) = ℤring)
118, 10ax-mp 5 . . . . . . 7 (Scalar‘𝑍) = ℤring
1211fveq2i 6357 . . . . . 6 (Base‘(Scalar‘𝑍)) = (Base‘ℤring)
13 zringbas 20047 . . . . . . 7 ℤ = (Base‘ℤring)
1413eqcomi 2770 . . . . . 6 (Base‘ℤring) = ℤ
1512, 14eqtri 2783 . . . . 5 (Base‘(Scalar‘𝑍)) = ℤ
1615oveq1i 6825 . . . 4 ((Base‘(Scalar‘𝑍)) ↑𝑚 {𝐴, 𝐵}) = (ℤ ↑𝑚 {𝐴, 𝐵})
177, 16eleqtrri 2839 . . 3 𝐹 ∈ ((Base‘(Scalar‘𝑍)) ↑𝑚 {𝐴, 𝐵})
18 3z 11623 . . . . . 6 3 ∈ ℤ
19 6nn 11402 . . . . . . 7 6 ∈ ℕ
2019nnzi 11614 . . . . . 6 6 ∈ ℤ
211zlmodzxzel 42662 . . . . . 6 ((3 ∈ ℤ ∧ 6 ∈ ℤ) → {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍))
2218, 20, 21mp2an 710 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍)
23 2z 11622 . . . . . 6 2 ∈ ℤ
24 4z 11624 . . . . . 6 4 ∈ ℤ
251zlmodzxzel 42662 . . . . . 6 ((2 ∈ ℤ ∧ 4 ∈ ℤ) → {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍))
2623, 24, 25mp2an 710 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍)
274eleq1i 2831 . . . . . 6 (𝐴 ∈ (Base‘𝑍) ↔ {⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍))
285eleq1i 2831 . . . . . 6 (𝐵 ∈ (Base‘𝑍) ↔ {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍))
2927, 28anbi12i 735 . . . . 5 ((𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍)) ↔ ({⟨0, 3⟩, ⟨1, 6⟩} ∈ (Base‘𝑍) ∧ {⟨0, 2⟩, ⟨1, 4⟩} ∈ (Base‘𝑍)))
3022, 26, 29mpbir2an 993 . . . 4 (𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍))
31 prelpwi 5065 . . . 4 ((𝐴 ∈ (Base‘𝑍) ∧ 𝐵 ∈ (Base‘𝑍)) → {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍))
3230, 31ax-mp 5 . . 3 {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍)
33 lincval 42727 . . 3 ((𝑍 ∈ V ∧ 𝐹 ∈ ((Base‘(Scalar‘𝑍)) ↑𝑚 {𝐴, 𝐵}) ∧ {𝐴, 𝐵} ∈ 𝒫 (Base‘𝑍)) → (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥))))
343, 17, 32, 33mp3an 1573 . 2 (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥)))
35 lmodcmn 19134 . . . . 5 (𝑍 ∈ LMod → 𝑍 ∈ CMnd)
3635adantr 472 . . . 4 ((𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍)) → 𝑍 ∈ CMnd)
378, 36ax-mp 5 . . 3 𝑍 ∈ CMnd
38 prex 5059 . . . . 5 {⟨0, 3⟩, ⟨1, 6⟩} ∈ V
394, 38eqeltri 2836 . . . 4 𝐴 ∈ V
40 prex 5059 . . . . 5 {⟨0, 2⟩, ⟨1, 4⟩} ∈ V
415, 40eqeltri 2836 . . . 4 𝐵 ∈ V
421, 4, 5zlmodzxzldeplem 42816 . . . 4 𝐴𝐵
4339, 41, 423pm3.2i 1424 . . 3 (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵)
448simpli 476 . . . . 5 𝑍 ∈ LMod
45 elmapi 8048 . . . . . . 7 (𝐹 ∈ (ℤ ↑𝑚 {𝐴, 𝐵}) → 𝐹:{𝐴, 𝐵}⟶ℤ)
4639prid1 4442 . . . . . . . 8 𝐴 ∈ {𝐴, 𝐵}
47 ffvelrn 6522 . . . . . . . 8 ((𝐹:{𝐴, 𝐵}⟶ℤ ∧ 𝐴 ∈ {𝐴, 𝐵}) → (𝐹𝐴) ∈ ℤ)
4846, 47mpan2 709 . . . . . . 7 (𝐹:{𝐴, 𝐵}⟶ℤ → (𝐹𝐴) ∈ ℤ)
497, 45, 48mp2b 10 . . . . . 6 (𝐹𝐴) ∈ ℤ
508, 9ax-mp 5 . . . . . . . . 9 ring = (Scalar‘𝑍)
5150eqcomi 2770 . . . . . . . 8 (Scalar‘𝑍) = ℤring
5251fveq2i 6357 . . . . . . 7 (Base‘(Scalar‘𝑍)) = (Base‘ℤring)
5352, 14eqtri 2783 . . . . . 6 (Base‘(Scalar‘𝑍)) = ℤ
5449, 53eleqtrri 2839 . . . . 5 (𝐹𝐴) ∈ (Base‘(Scalar‘𝑍))
554, 22eqeltri 2836 . . . . 5 𝐴 ∈ (Base‘𝑍)
56 eqid 2761 . . . . . 6 (Base‘𝑍) = (Base‘𝑍)
57 eqid 2761 . . . . . 6 (Scalar‘𝑍) = (Scalar‘𝑍)
58 eqid 2761 . . . . . 6 ( ·𝑠𝑍) = ( ·𝑠𝑍)
59 eqid 2761 . . . . . 6 (Base‘(Scalar‘𝑍)) = (Base‘(Scalar‘𝑍))
6056, 57, 58, 59lmodvscl 19103 . . . . 5 ((𝑍 ∈ LMod ∧ (𝐹𝐴) ∈ (Base‘(Scalar‘𝑍)) ∧ 𝐴 ∈ (Base‘𝑍)) → ((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍))
6144, 54, 55, 60mp3an 1573 . . . 4 ((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍)
6241prid2 4443 . . . . . . . 8 𝐵 ∈ {𝐴, 𝐵}
63 ffvelrn 6522 . . . . . . . 8 ((𝐹:{𝐴, 𝐵}⟶ℤ ∧ 𝐵 ∈ {𝐴, 𝐵}) → (𝐹𝐵) ∈ ℤ)
6462, 63mpan2 709 . . . . . . 7 (𝐹:{𝐴, 𝐵}⟶ℤ → (𝐹𝐵) ∈ ℤ)
657, 45, 64mp2b 10 . . . . . 6 (𝐹𝐵) ∈ ℤ
6665, 53eleqtrri 2839 . . . . 5 (𝐹𝐵) ∈ (Base‘(Scalar‘𝑍))
675, 26eqeltri 2836 . . . . 5 𝐵 ∈ (Base‘𝑍)
6856, 57, 58, 59lmodvscl 19103 . . . . 5 ((𝑍 ∈ LMod ∧ (𝐹𝐵) ∈ (Base‘(Scalar‘𝑍)) ∧ 𝐵 ∈ (Base‘𝑍)) → ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍))
6944, 66, 67, 68mp3an 1573 . . . 4 ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍)
7061, 69pm3.2i 470 . . 3 (((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍) ∧ ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍))
71 eqid 2761 . . . 4 (+g𝑍) = (+g𝑍)
72 fveq2 6354 . . . . 5 (𝑥 = 𝐴 → (𝐹𝑥) = (𝐹𝐴))
73 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
7472, 73oveq12d 6833 . . . 4 (𝑥 = 𝐴 → ((𝐹𝑥)( ·𝑠𝑍)𝑥) = ((𝐹𝐴)( ·𝑠𝑍)𝐴))
75 fveq2 6354 . . . . 5 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
76 id 22 . . . . 5 (𝑥 = 𝐵𝑥 = 𝐵)
7775, 76oveq12d 6833 . . . 4 (𝑥 = 𝐵 → ((𝐹𝑥)( ·𝑠𝑍)𝑥) = ((𝐹𝐵)( ·𝑠𝑍)𝐵))
7856, 71, 74, 77gsumpr 42668 . . 3 ((𝑍 ∈ CMnd ∧ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵) ∧ (((𝐹𝐴)( ·𝑠𝑍)𝐴) ∈ (Base‘𝑍) ∧ ((𝐹𝐵)( ·𝑠𝑍)𝐵) ∈ (Base‘𝑍))) → (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥))) = (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵)))
7937, 43, 70, 78mp3an 1573 . 2 (𝑍 Σg (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝐹𝑥)( ·𝑠𝑍)𝑥))) = (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵))
806fveq1i 6355 . . . . . 6 (𝐹𝐴) = ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴)
81 2ex 11305 . . . . . . . 8 2 ∈ V
8239, 81fvpr1 6622 . . . . . . 7 (𝐴𝐵 → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2)
8342, 82ax-mp 5 . . . . . 6 ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐴) = 2
8480, 83eqtri 2783 . . . . 5 (𝐹𝐴) = 2
8584oveq1i 6825 . . . 4 ((𝐹𝐴)( ·𝑠𝑍)𝐴) = (2( ·𝑠𝑍)𝐴)
866fveq1i 6355 . . . . . 6 (𝐹𝐵) = ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐵)
87 negex 10492 . . . . . . . 8 -3 ∈ V
8841, 87fvpr2 6623 . . . . . . 7 (𝐴𝐵 → ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐵) = -3)
8942, 88ax-mp 5 . . . . . 6 ({⟨𝐴, 2⟩, ⟨𝐵, -3⟩}‘𝐵) = -3
9086, 89eqtri 2783 . . . . 5 (𝐹𝐵) = -3
9190oveq1i 6825 . . . 4 ((𝐹𝐵)( ·𝑠𝑍)𝐵) = (-3( ·𝑠𝑍)𝐵)
9285, 91oveq12i 6827 . . 3 (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵)) = ((2( ·𝑠𝑍)𝐴)(+g𝑍)(-3( ·𝑠𝑍)𝐵))
93 eqid 2761 . . . . . 6 {⟨0, 0⟩, ⟨1, 0⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
941, 93zlmodzxz0 42663 . . . . 5 {⟨0, 0⟩, ⟨1, 0⟩} = (0g𝑍)
9594eqcomi 2770 . . . 4 (0g𝑍) = {⟨0, 0⟩, ⟨1, 0⟩}
961, 4, 5, 95, 71, 58zlmodzxzequap 42817 . . 3 ((2( ·𝑠𝑍)𝐴)(+g𝑍)(-3( ·𝑠𝑍)𝐵)) = (0g𝑍)
9792, 96eqtri 2783 . 2 (((𝐹𝐴)( ·𝑠𝑍)𝐴)(+g𝑍)((𝐹𝐵)( ·𝑠𝑍)𝐵)) = (0g𝑍)
9834, 79, 973eqtri 2787 1 (𝐹( linC ‘𝑍){𝐴, 𝐵}) = (0g𝑍)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2140   ≠ wne 2933  Vcvv 3341  𝒫 cpw 4303  {cpr 4324  ⟨cop 4328   ↦ cmpt 4882  ⟶wf 6046  ‘cfv 6050  (class class class)co 6815   ↑𝑚 cmap 8026  0cc0 10149  1c1 10150  -cneg 10480  2c2 11283  3c3 11284  4c4 11285  6c6 11287  ℤcz 11590  Basecbs 16080  +gcplusg 16164  Scalarcsca 16167   ·𝑠 cvsca 16168  0gc0g 16323   Σg cgsu 16324  CMndccmn 18414  LModclmod 19086  ℤringzring 20041   freeLMod cfrlm 20313   linC clinc 42722 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-inf2 8714  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-addf 10228  ax-mulf 10229 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-iin 4676  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-se 5227  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-isom 6059  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-of 7064  df-om 7233  df-1st 7335  df-2nd 7336  df-supp 7466  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-ixp 8078  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fsupp 8444  df-sup 8516  df-oi 8583  df-card 8976  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-fz 12541  df-fzo 12681  df-seq 13017  df-hash 13333  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-sets 16087  df-ress 16088  df-plusg 16177  df-mulr 16178  df-starv 16179  df-sca 16180  df-vsca 16181  df-ip 16182  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-hom 16189  df-cco 16190  df-0g 16325  df-gsum 16326  df-prds 16331  df-pws 16333  df-mre 16469  df-mrc 16470  df-acs 16472  df-mgm 17464  df-sgrp 17506  df-mnd 17517  df-submnd 17558  df-grp 17647  df-minusg 17648  df-sbg 17649  df-mulg 17763  df-subg 17813  df-cntz 17971  df-cmn 18416  df-abl 18417  df-mgp 18711  df-ur 18723  df-ring 18770  df-cring 18771  df-subrg 19001  df-lmod 19088  df-lss 19156  df-sra 19395  df-rgmod 19396  df-cnfld 19970  df-zring 20042  df-dsmm 20299  df-frlm 20314  df-linc 42724 This theorem is referenced by:  zlmodzxzldep  42822
 Copyright terms: Public domain W3C validator