![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzequa | Structured version Visualization version GIF version |
Description: Example of an equation within the ℤ-module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxzequa.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzequa.o | ⊢ 0 = {〈0, 0〉, 〈1, 0〉} |
zlmodzxzequa.t | ⊢ ∙ = ( ·𝑠 ‘𝑍) |
zlmodzxzequa.m | ⊢ − = (-g‘𝑍) |
zlmodzxzequa.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
zlmodzxzequa.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
Ref | Expression |
---|---|
zlmodzxzequa | ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3cn 11287 | . . . . . . . 8 ⊢ 3 ∈ ℂ | |
2 | 1 | 2timesi 11339 | . . . . . . 7 ⊢ (2 · 3) = (3 + 3) |
3 | 3p3e6 11353 | . . . . . . 7 ⊢ (3 + 3) = 6 | |
4 | 2, 3 | eqtri 2782 | . . . . . 6 ⊢ (2 · 3) = 6 |
5 | 3t2e6 11371 | . . . . . 6 ⊢ (3 · 2) = 6 | |
6 | 4, 5 | oveq12i 6825 | . . . . 5 ⊢ ((2 · 3) − (3 · 2)) = (6 − 6) |
7 | 6cn 11294 | . . . . . 6 ⊢ 6 ∈ ℂ | |
8 | 7 | subidi 10544 | . . . . 5 ⊢ (6 − 6) = 0 |
9 | 6, 8 | eqtri 2782 | . . . 4 ⊢ ((2 · 3) − (3 · 2)) = 0 |
10 | 9 | opeq2i 4557 | . . 3 ⊢ 〈0, ((2 · 3) − (3 · 2))〉 = 〈0, 0〉 |
11 | 2t6m3t4e0 42636 | . . . 4 ⊢ ((2 · 6) − (3 · 4)) = 0 | |
12 | 11 | opeq2i 4557 | . . 3 ⊢ 〈1, ((2 · 6) − (3 · 4))〉 = 〈1, 0〉 |
13 | 10, 12 | preq12i 4417 | . 2 ⊢ {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} = {〈0, 0〉, 〈1, 0〉} |
14 | zlmodzxzequa.a | . . . . . 6 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
15 | 14 | oveq2i 6824 | . . . . 5 ⊢ (2 ∙ 𝐴) = (2 ∙ {〈0, 3〉, 〈1, 6〉}) |
16 | 2z 11601 | . . . . . 6 ⊢ 2 ∈ ℤ | |
17 | 3z 11602 | . . . . . 6 ⊢ 3 ∈ ℤ | |
18 | 6nn 11381 | . . . . . . 7 ⊢ 6 ∈ ℕ | |
19 | 18 | nnzi 11593 | . . . . . 6 ⊢ 6 ∈ ℤ |
20 | zlmodzxzequa.z | . . . . . . 7 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
21 | zlmodzxzequa.t | . . . . . . 7 ⊢ ∙ = ( ·𝑠 ‘𝑍) | |
22 | 20, 21 | zlmodzxzscm 42645 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (2 ∙ {〈0, 3〉, 〈1, 6〉}) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉}) |
23 | 16, 17, 19, 22 | mp3an 1573 | . . . . 5 ⊢ (2 ∙ {〈0, 3〉, 〈1, 6〉}) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉} |
24 | 15, 23 | eqtri 2782 | . . . 4 ⊢ (2 ∙ 𝐴) = {〈0, (2 · 3)〉, 〈1, (2 · 6)〉} |
25 | zlmodzxzequa.b | . . . . . 6 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
26 | 25 | oveq2i 6824 | . . . . 5 ⊢ (3 ∙ 𝐵) = (3 ∙ {〈0, 2〉, 〈1, 4〉}) |
27 | 4z 11603 | . . . . . 6 ⊢ 4 ∈ ℤ | |
28 | 20, 21 | zlmodzxzscm 42645 | . . . . . 6 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (3 ∙ {〈0, 2〉, 〈1, 4〉}) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) |
29 | 17, 16, 27, 28 | mp3an 1573 | . . . . 5 ⊢ (3 ∙ {〈0, 2〉, 〈1, 4〉}) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉} |
30 | 26, 29 | eqtri 2782 | . . . 4 ⊢ (3 ∙ 𝐵) = {〈0, (3 · 2)〉, 〈1, (3 · 4)〉} |
31 | 24, 30 | oveq12i 6825 | . . 3 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) |
32 | zmulcl 11618 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 · 3) ∈ ℤ) | |
33 | 16, 17, 32 | mp2an 710 | . . . 4 ⊢ (2 · 3) ∈ ℤ |
34 | zmulcl 11618 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 · 2) ∈ ℤ) | |
35 | 17, 16, 34 | mp2an 710 | . . . 4 ⊢ (3 · 2) ∈ ℤ |
36 | zmulcl 11618 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ 6 ∈ ℤ) → (2 · 6) ∈ ℤ) | |
37 | 16, 19, 36 | mp2an 710 | . . . 4 ⊢ (2 · 6) ∈ ℤ |
38 | zmulcl 11618 | . . . . 5 ⊢ ((3 ∈ ℤ ∧ 4 ∈ ℤ) → (3 · 4) ∈ ℤ) | |
39 | 17, 27, 38 | mp2an 710 | . . . 4 ⊢ (3 · 4) ∈ ℤ |
40 | zlmodzxzequa.m | . . . . 5 ⊢ − = (-g‘𝑍) | |
41 | 20, 40 | zlmodzxzsub 42648 | . . . 4 ⊢ ((((2 · 3) ∈ ℤ ∧ (3 · 2) ∈ ℤ) ∧ ((2 · 6) ∈ ℤ ∧ (3 · 4) ∈ ℤ)) → ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉}) |
42 | 33, 35, 37, 39, 41 | mp4an 711 | . . 3 ⊢ ({〈0, (2 · 3)〉, 〈1, (2 · 6)〉} − {〈0, (3 · 2)〉, 〈1, (3 · 4)〉}) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} |
43 | 31, 42 | eqtri 2782 | . 2 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = {〈0, ((2 · 3) − (3 · 2))〉, 〈1, ((2 · 6) − (3 · 4))〉} |
44 | zlmodzxzequa.o | . 2 ⊢ 0 = {〈0, 0〉, 〈1, 0〉} | |
45 | 13, 43, 44 | 3eqtr4i 2792 | 1 ⊢ ((2 ∙ 𝐴) − (3 ∙ 𝐵)) = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1632 ∈ wcel 2139 {cpr 4323 〈cop 4327 ‘cfv 6049 (class class class)co 6813 0cc0 10128 1c1 10129 + caddc 10131 · cmul 10133 − cmin 10458 2c2 11262 3c3 11263 4c4 11264 6c6 11266 ℤcz 11569 ·𝑠 cvsca 16147 -gcsg 17625 ℤringzring 20020 freeLMod cfrlm 20292 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-addf 10207 ax-mulf 10208 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-map 8025 df-ixp 8075 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-sup 8513 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-dec 11686 df-uz 11880 df-fz 12520 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-starv 16158 df-sca 16159 df-vsca 16160 df-ip 16161 df-tset 16162 df-ple 16163 df-ds 16166 df-unif 16167 df-hom 16168 df-cco 16169 df-0g 16304 df-prds 16310 df-pws 16312 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-grp 17626 df-minusg 17627 df-sbg 17628 df-subg 17792 df-cmn 18395 df-mgp 18690 df-ur 18702 df-ring 18749 df-cring 18750 df-subrg 18980 df-lmod 19067 df-lss 19135 df-sra 19374 df-rgmod 19375 df-cnfld 19949 df-zring 20021 df-dsmm 20278 df-frlm 20293 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |