Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzequa Structured version   Visualization version   GIF version

Theorem zlmodzxzequa 42795
Description: Example of an equation within the -module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set). (Contributed by AV, 22-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzequa.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzequa.o 0 = {⟨0, 0⟩, ⟨1, 0⟩}
zlmodzxzequa.t = ( ·𝑠𝑍)
zlmodzxzequa.m = (-g𝑍)
zlmodzxzequa.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzequa.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
Assertion
Ref Expression
zlmodzxzequa ((2 𝐴) (3 𝐵)) = 0

Proof of Theorem zlmodzxzequa
StepHypRef Expression
1 3cn 11287 . . . . . . . 8 3 ∈ ℂ
212timesi 11339 . . . . . . 7 (2 · 3) = (3 + 3)
3 3p3e6 11353 . . . . . . 7 (3 + 3) = 6
42, 3eqtri 2782 . . . . . 6 (2 · 3) = 6
5 3t2e6 11371 . . . . . 6 (3 · 2) = 6
64, 5oveq12i 6825 . . . . 5 ((2 · 3) − (3 · 2)) = (6 − 6)
7 6cn 11294 . . . . . 6 6 ∈ ℂ
87subidi 10544 . . . . 5 (6 − 6) = 0
96, 8eqtri 2782 . . . 4 ((2 · 3) − (3 · 2)) = 0
109opeq2i 4557 . . 3 ⟨0, ((2 · 3) − (3 · 2))⟩ = ⟨0, 0⟩
11 2t6m3t4e0 42636 . . . 4 ((2 · 6) − (3 · 4)) = 0
1211opeq2i 4557 . . 3 ⟨1, ((2 · 6) − (3 · 4))⟩ = ⟨1, 0⟩
1310, 12preq12i 4417 . 2 {⟨0, ((2 · 3) − (3 · 2))⟩, ⟨1, ((2 · 6) − (3 · 4))⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
14 zlmodzxzequa.a . . . . . 6 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
1514oveq2i 6824 . . . . 5 (2 𝐴) = (2 {⟨0, 3⟩, ⟨1, 6⟩})
16 2z 11601 . . . . . 6 2 ∈ ℤ
17 3z 11602 . . . . . 6 3 ∈ ℤ
18 6nn 11381 . . . . . . 7 6 ∈ ℕ
1918nnzi 11593 . . . . . 6 6 ∈ ℤ
20 zlmodzxzequa.z . . . . . . 7 𝑍 = (ℤring freeLMod {0, 1})
21 zlmodzxzequa.t . . . . . . 7 = ( ·𝑠𝑍)
2220, 21zlmodzxzscm 42645 . . . . . 6 ((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (2 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩})
2316, 17, 19, 22mp3an 1573 . . . . 5 (2 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩}
2415, 23eqtri 2782 . . . 4 (2 𝐴) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩}
25 zlmodzxzequa.b . . . . . 6 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
2625oveq2i 6824 . . . . 5 (3 𝐵) = (3 {⟨0, 2⟩, ⟨1, 4⟩})
27 4z 11603 . . . . . 6 4 ∈ ℤ
2820, 21zlmodzxzscm 42645 . . . . . 6 ((3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (3 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩})
2917, 16, 27, 28mp3an 1573 . . . . 5 (3 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩}
3026, 29eqtri 2782 . . . 4 (3 𝐵) = {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩}
3124, 30oveq12i 6825 . . 3 ((2 𝐴) (3 𝐵)) = ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩})
32 zmulcl 11618 . . . . 5 ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 · 3) ∈ ℤ)
3316, 17, 32mp2an 710 . . . 4 (2 · 3) ∈ ℤ
34 zmulcl 11618 . . . . 5 ((3 ∈ ℤ ∧ 2 ∈ ℤ) → (3 · 2) ∈ ℤ)
3517, 16, 34mp2an 710 . . . 4 (3 · 2) ∈ ℤ
36 zmulcl 11618 . . . . 5 ((2 ∈ ℤ ∧ 6 ∈ ℤ) → (2 · 6) ∈ ℤ)
3716, 19, 36mp2an 710 . . . 4 (2 · 6) ∈ ℤ
38 zmulcl 11618 . . . . 5 ((3 ∈ ℤ ∧ 4 ∈ ℤ) → (3 · 4) ∈ ℤ)
3917, 27, 38mp2an 710 . . . 4 (3 · 4) ∈ ℤ
40 zlmodzxzequa.m . . . . 5 = (-g𝑍)
4120, 40zlmodzxzsub 42648 . . . 4 ((((2 · 3) ∈ ℤ ∧ (3 · 2) ∈ ℤ) ∧ ((2 · 6) ∈ ℤ ∧ (3 · 4) ∈ ℤ)) → ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩}) = {⟨0, ((2 · 3) − (3 · 2))⟩, ⟨1, ((2 · 6) − (3 · 4))⟩})
4233, 35, 37, 39, 41mp4an 711 . . 3 ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} {⟨0, (3 · 2)⟩, ⟨1, (3 · 4)⟩}) = {⟨0, ((2 · 3) − (3 · 2))⟩, ⟨1, ((2 · 6) − (3 · 4))⟩}
4331, 42eqtri 2782 . 2 ((2 𝐴) (3 𝐵)) = {⟨0, ((2 · 3) − (3 · 2))⟩, ⟨1, ((2 · 6) − (3 · 4))⟩}
44 zlmodzxzequa.o . 2 0 = {⟨0, 0⟩, ⟨1, 0⟩}
4513, 43, 443eqtr4i 2792 1 ((2 𝐴) (3 𝐵)) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1632  wcel 2139  {cpr 4323  cop 4327  cfv 6049  (class class class)co 6813  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  cmin 10458  2c2 11262  3c3 11263  4c4 11264  6c6 11266  cz 11569   ·𝑠 cvsca 16147  -gcsg 17625  ringzring 20020   freeLMod cfrlm 20292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-sup 8513  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-0g 16304  df-prds 16310  df-pws 16312  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-grp 17626  df-minusg 17627  df-sbg 17628  df-subg 17792  df-cmn 18395  df-mgp 18690  df-ur 18702  df-ring 18749  df-cring 18750  df-subrg 18980  df-lmod 19067  df-lss 19135  df-sra 19374  df-rgmod 19375  df-cnfld 19949  df-zring 20021  df-dsmm 20278  df-frlm 20293
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator