MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zgt0ge1 Structured version   Visualization version   GIF version

Theorem zgt0ge1 11469
Description: An integer greater than 0 is greater than or equal to 1. (Contributed by AV, 14-Oct-2018.)
Assertion
Ref Expression
zgt0ge1 (𝑍 ∈ ℤ → (0 < 𝑍 ↔ 1 ≤ 𝑍))

Proof of Theorem zgt0ge1
StepHypRef Expression
1 0z 11426 . . 3 0 ∈ ℤ
2 zltp1le 11465 . . 3 ((0 ∈ ℤ ∧ 𝑍 ∈ ℤ) → (0 < 𝑍 ↔ (0 + 1) ≤ 𝑍))
31, 2mpan 706 . 2 (𝑍 ∈ ℤ → (0 < 𝑍 ↔ (0 + 1) ≤ 𝑍))
4 0p1e1 11170 . . . 4 (0 + 1) = 1
54a1i 11 . . 3 (𝑍 ∈ ℤ → (0 + 1) = 1)
65breq1d 4695 . 2 (𝑍 ∈ ℤ → ((0 + 1) ≤ 𝑍 ↔ 1 ≤ 𝑍))
73, 6bitrd 268 1 (𝑍 ∈ ℤ → (0 < 𝑍 ↔ 1 ≤ 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1523  wcel 2030   class class class wbr 4685  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977   < clt 10112  cle 10113  cz 11415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416
This theorem is referenced by:  recnz  11490  wrdlenge1n0  13372  dvdslelem  15078  taupilem1  33297  poimirlem24  33563
  Copyright terms: Public domain W3C validator