![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zfregfr | Structured version Visualization version GIF version |
Description: The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
zfregfr | ⊢ E Fr 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfepfr 5234 | . 2 ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) | |
2 | vex 3354 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | zfreg 8656 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑦 ∩ 𝑥) = ∅) | |
4 | 2, 3 | mpan 670 | . . . 4 ⊢ (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 (𝑦 ∩ 𝑥) = ∅) |
5 | incom 3956 | . . . . . 6 ⊢ (𝑦 ∩ 𝑥) = (𝑥 ∩ 𝑦) | |
6 | 5 | eqeq1i 2776 | . . . . 5 ⊢ ((𝑦 ∩ 𝑥) = ∅ ↔ (𝑥 ∩ 𝑦) = ∅) |
7 | 6 | rexbii 3189 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 (𝑦 ∩ 𝑥) = ∅ ↔ ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
8 | 4, 7 | sylib 208 | . . 3 ⊢ (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
9 | 8 | adantl 467 | . 2 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
10 | 1, 9 | mpgbir 1874 | 1 ⊢ E Fr 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∃wrex 3062 Vcvv 3351 ∩ cin 3722 ⊆ wss 3723 ∅c0 4063 E cep 5161 Fr wfr 5205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 ax-reg 8653 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-eprel 5162 df-fr 5208 |
This theorem is referenced by: en2lp 8666 dford2 8681 noinfep 8721 zfregs 8772 bnj852 31329 dford5reg 32023 trelpss 39184 |
Copyright terms: Public domain | W3C validator |