Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfcndinf Structured version   Visualization version   GIF version

Theorem zfcndinf 9478
 Description: Axiom of Infinity ax-inf 8573, reproved from conditionless ZFC axioms. Since we have already reproved Extensionality, Replacement, and Power Sets above, we are justified in referencing theorem el 4877 in the proof. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by NM, 15-Aug-2003.)
Assertion
Ref Expression
zfcndinf 𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤

Proof of Theorem zfcndinf
StepHypRef Expression
1 el 4877 . . 3 𝑤 𝑥𝑤
2 nfv 1883 . . . . . 6 𝑤 𝑥𝑦
3 nfe1 2067 . . . . . . . 8 𝑤𝑤(𝑥𝑤𝑤𝑦)
42, 3nfim 1865 . . . . . . 7 𝑤(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))
54nfal 2191 . . . . . 6 𝑤𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))
62, 5nfan 1868 . . . . 5 𝑤(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
76nfex 2192 . . . 4 𝑤𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
8 axinfnd 9466 . . . . 5 𝑦(𝑥𝑤 → (𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
9819.37iv 1916 . . . 4 (𝑥𝑤 → ∃𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
107, 9exlimi 2124 . . 3 (∃𝑤 𝑥𝑤 → ∃𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
111, 10ax-mp 5 . 2 𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
12 elequ1 2037 . . . . . 6 (𝑧 = 𝑥 → (𝑧𝑦𝑥𝑦))
13 elequ1 2037 . . . . . . . 8 (𝑧 = 𝑥 → (𝑧𝑤𝑥𝑤))
1413anbi1d 741 . . . . . . 7 (𝑧 = 𝑥 → ((𝑧𝑤𝑤𝑦) ↔ (𝑥𝑤𝑤𝑦)))
1514exbidv 1890 . . . . . 6 (𝑧 = 𝑥 → (∃𝑤(𝑧𝑤𝑤𝑦) ↔ ∃𝑤(𝑥𝑤𝑤𝑦)))
1612, 15imbi12d 333 . . . . 5 (𝑧 = 𝑥 → ((𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)) ↔ (𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
1716cbvalv 2309 . . . 4 (∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)) ↔ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦)))
1817anbi2i 730 . . 3 ((𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
1918exbii 1814 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑥(𝑥𝑦 → ∃𝑤(𝑥𝑤𝑤𝑦))))
2011, 19mpbir 221 1 𝑦(𝑥𝑦 ∧ ∀𝑧(𝑧𝑦 → ∃𝑤(𝑧𝑤𝑤𝑦)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383  ∀wal 1521   = wceq 1523  ∃wex 1744   ∈ wcel 2030 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-reg 8538  ax-inf 8573 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-v 3233  df-dif 3610  df-un 3612  df-nul 3949  df-sn 4211  df-pr 4213 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator