MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfbas Structured version   Visualization version   GIF version

Theorem zfbas 21922
Description: The set of upper sets of integers is a filter base on , which corresponds to convergence of sequences on . (Contributed by Mario Carneiro, 13-Oct-2015.)
Assertion
Ref Expression
zfbas ran ℤ ∈ (fBas‘ℤ)

Proof of Theorem zfbas
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uzf 11903 . . 3 :ℤ⟶𝒫 ℤ
2 frn 6215 . . 3 (ℤ:ℤ⟶𝒫 ℤ → ran ℤ ⊆ 𝒫 ℤ)
31, 2ax-mp 5 . 2 ran ℤ ⊆ 𝒫 ℤ
4 ffn 6207 . . . . . 6 (ℤ:ℤ⟶𝒫 ℤ → ℤ Fn ℤ)
51, 4ax-mp 5 . . . . 5 Fn ℤ
6 1z 11620 . . . . 5 1 ∈ ℤ
7 fnfvelrn 6521 . . . . 5 ((ℤ Fn ℤ ∧ 1 ∈ ℤ) → (ℤ‘1) ∈ ran ℤ)
85, 6, 7mp2an 710 . . . 4 (ℤ‘1) ∈ ran ℤ
98ne0ii 4067 . . 3 ran ℤ ≠ ∅
10 uzid 11915 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ (ℤ𝑥))
11 n0i 4064 . . . . . . 7 (𝑥 ∈ (ℤ𝑥) → ¬ (ℤ𝑥) = ∅)
1210, 11syl 17 . . . . . 6 (𝑥 ∈ ℤ → ¬ (ℤ𝑥) = ∅)
1312nrex 3139 . . . . 5 ¬ ∃𝑥 ∈ ℤ (ℤ𝑥) = ∅
14 fvelrnb 6407 . . . . . 6 (ℤ Fn ℤ → (∅ ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = ∅))
155, 14ax-mp 5 . . . . 5 (∅ ∈ ran ℤ ↔ ∃𝑥 ∈ ℤ (ℤ𝑥) = ∅)
1613, 15mtbir 312 . . . 4 ¬ ∅ ∈ ran ℤ
1716nelir 3039 . . 3 ∅ ∉ ran ℤ
18 uzin2 14304 . . . . 5 ((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) → (𝑥𝑦) ∈ ran ℤ)
19 vex 3344 . . . . . . 7 𝑥 ∈ V
2019inex1 4952 . . . . . 6 (𝑥𝑦) ∈ V
2120pwid 4319 . . . . 5 (𝑥𝑦) ∈ 𝒫 (𝑥𝑦)
22 inelcm 4177 . . . . 5 (((𝑥𝑦) ∈ ran ℤ ∧ (𝑥𝑦) ∈ 𝒫 (𝑥𝑦)) → (ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
2318, 21, 22sylancl 697 . . . 4 ((𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ) → (ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
2423rgen2a 3116 . . 3 𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅
259, 17, 243pm3.2i 1424 . 2 (ran ℤ ≠ ∅ ∧ ∅ ∉ ran ℤ ∧ ∀𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)
26 zex 11599 . . 3 ℤ ∈ V
27 isfbas 21855 . . 3 (ℤ ∈ V → (ran ℤ ∈ (fBas‘ℤ) ↔ (ran ℤ ⊆ 𝒫 ℤ ∧ (ran ℤ ≠ ∅ ∧ ∅ ∉ ran ℤ ∧ ∀𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅))))
2826, 27ax-mp 5 . 2 (ran ℤ ∈ (fBas‘ℤ) ↔ (ran ℤ ⊆ 𝒫 ℤ ∧ (ran ℤ ≠ ∅ ∧ ∅ ∉ ran ℤ ∧ ∀𝑥 ∈ ran ℤ𝑦 ∈ ran ℤ(ran ℤ ∩ 𝒫 (𝑥𝑦)) ≠ ∅)))
293, 25, 28mpbir2an 993 1 ran ℤ ∈ (fBas‘ℤ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2140  wne 2933  wnel 3036  wral 3051  wrex 3052  Vcvv 3341  cin 3715  wss 3716  c0 4059  𝒫 cpw 4303  ran crn 5268   Fn wfn 6045  wf 6046  cfv 6050  1c1 10150  cz 11590  cuz 11900  fBascfbas 19957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-z 11591  df-uz 11901  df-fbas 19966
This theorem is referenced by:  uzfbas  21924
  Copyright terms: Public domain W3C validator