![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zclmncvs | Structured version Visualization version GIF version |
Description: The ring of integers as left module over itself is a subcomplex module, but not a subcomplex vector space. The vector operation is +, and the scalar product is ·. (Contributed by AV, 22-Oct-2021.) |
Ref | Expression |
---|---|
zclmncvs.z | ⊢ 𝑍 = (ringLMod‘ℤring) |
Ref | Expression |
---|---|
zclmncvs | ⊢ (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zringring 19869 | . . . . 5 ⊢ ℤring ∈ Ring | |
2 | rlmlmod 19253 | . . . . 5 ⊢ (ℤring ∈ Ring → (ringLMod‘ℤring) ∈ LMod) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (ringLMod‘ℤring) ∈ LMod |
4 | rlmsca 19248 | . . . . . 6 ⊢ (ℤring ∈ Ring → ℤring = (Scalar‘(ringLMod‘ℤring))) | |
5 | 1, 4 | ax-mp 5 | . . . . 5 ⊢ ℤring = (Scalar‘(ringLMod‘ℤring)) |
6 | df-zring 19867 | . . . . 5 ⊢ ℤring = (ℂfld ↾s ℤ) | |
7 | 5, 6 | eqtr3i 2675 | . . . 4 ⊢ (Scalar‘(ringLMod‘ℤring)) = (ℂfld ↾s ℤ) |
8 | zsubrg 19847 | . . . 4 ⊢ ℤ ∈ (SubRing‘ℂfld) | |
9 | eqid 2651 | . . . . 5 ⊢ (Scalar‘(ringLMod‘ℤring)) = (Scalar‘(ringLMod‘ℤring)) | |
10 | 9 | isclmi 22923 | . . . 4 ⊢ (((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) = (ℂfld ↾s ℤ) ∧ ℤ ∈ (SubRing‘ℂfld)) → (ringLMod‘ℤring) ∈ ℂMod) |
11 | 3, 7, 8, 10 | mp3an 1464 | . . 3 ⊢ (ringLMod‘ℤring) ∈ ℂMod |
12 | zclmncvs.z | . . . 4 ⊢ 𝑍 = (ringLMod‘ℤring) | |
13 | 12 | eleq1i 2721 | . . 3 ⊢ (𝑍 ∈ ℂMod ↔ (ringLMod‘ℤring) ∈ ℂMod) |
14 | 11, 13 | mpbir 221 | . 2 ⊢ 𝑍 ∈ ℂMod |
15 | zringndrg 19886 | . . . . . . . 8 ⊢ ℤring ∉ DivRing | |
16 | 15 | neli 2928 | . . . . . . 7 ⊢ ¬ ℤring ∈ DivRing |
17 | 4 | eqcomd 2657 | . . . . . . . . 9 ⊢ (ℤring ∈ Ring → (Scalar‘(ringLMod‘ℤring)) = ℤring) |
18 | 1, 17 | ax-mp 5 | . . . . . . . 8 ⊢ (Scalar‘(ringLMod‘ℤring)) = ℤring |
19 | 18 | eleq1i 2721 | . . . . . . 7 ⊢ ((Scalar‘(ringLMod‘ℤring)) ∈ DivRing ↔ ℤring ∈ DivRing) |
20 | 16, 19 | mtbir 312 | . . . . . 6 ⊢ ¬ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing |
21 | 20 | intnan 980 | . . . . 5 ⊢ ¬ ((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing) |
22 | 9 | islvec 19152 | . . . . 5 ⊢ ((ringLMod‘ℤring) ∈ LVec ↔ ((ringLMod‘ℤring) ∈ LMod ∧ (Scalar‘(ringLMod‘ℤring)) ∈ DivRing)) |
23 | 21, 22 | mtbir 312 | . . . 4 ⊢ ¬ (ringLMod‘ℤring) ∈ LVec |
24 | 23 | olci 405 | . . 3 ⊢ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec) |
25 | df-nel 2927 | . . . 4 ⊢ (𝑍 ∉ ℂVec ↔ ¬ 𝑍 ∈ ℂVec) | |
26 | ianor 508 | . . . . . 6 ⊢ (¬ ((ringLMod‘ℤring) ∈ ℂMod ∧ (ringLMod‘ℤring) ∈ LVec) ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) | |
27 | elin 3829 | . . . . . 6 ⊢ ((ringLMod‘ℤring) ∈ (ℂMod ∩ LVec) ↔ ((ringLMod‘ℤring) ∈ ℂMod ∧ (ringLMod‘ℤring) ∈ LVec)) | |
28 | 26, 27 | xchnxbir 322 | . . . . 5 ⊢ (¬ (ringLMod‘ℤring) ∈ (ℂMod ∩ LVec) ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) |
29 | df-cvs 22970 | . . . . . 6 ⊢ ℂVec = (ℂMod ∩ LVec) | |
30 | 12, 29 | eleq12i 2723 | . . . . 5 ⊢ (𝑍 ∈ ℂVec ↔ (ringLMod‘ℤring) ∈ (ℂMod ∩ LVec)) |
31 | 28, 30 | xchnxbir 322 | . . . 4 ⊢ (¬ 𝑍 ∈ ℂVec ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) |
32 | 25, 31 | bitri 264 | . . 3 ⊢ (𝑍 ∉ ℂVec ↔ (¬ (ringLMod‘ℤring) ∈ ℂMod ∨ ¬ (ringLMod‘ℤring) ∈ LVec)) |
33 | 24, 32 | mpbir 221 | . 2 ⊢ 𝑍 ∉ ℂVec |
34 | 14, 33 | pm3.2i 470 | 1 ⊢ (𝑍 ∈ ℂMod ∧ 𝑍 ∉ ℂVec) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 382 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∉ wnel 2926 ∩ cin 3606 ‘cfv 5926 (class class class)co 6690 ℤcz 11415 ↾s cress 15905 Scalarcsca 15991 Ringcrg 18593 DivRingcdr 18795 SubRingcsubrg 18824 LModclmod 18911 LVecclvec 19150 ringLModcrglmod 19217 ℂfldccnfld 19794 ℤringzring 19866 ℂModcclm 22908 ℂVecccvs 22969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 ax-addf 10053 ax-mulf 10054 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-rp 11871 df-fz 12365 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-gz 15681 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-starv 16003 df-sca 16004 df-vsca 16005 df-ip 16006 df-tset 16007 df-ple 16008 df-ds 16011 df-unif 16012 df-0g 16149 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-grp 17472 df-minusg 17473 df-subg 17638 df-cmn 18241 df-mgp 18536 df-ur 18548 df-ring 18595 df-cring 18596 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-dvr 18729 df-drng 18797 df-subrg 18826 df-lmod 18913 df-lvec 19151 df-sra 19220 df-rgmod 19221 df-cnfld 19795 df-zring 19867 df-clm 22909 df-cvs 22970 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |