MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yoniso Structured version   Visualization version   GIF version

Theorem yoniso 16919
Description: If the codomain is recoverable from a hom-set, then the Yoneda embedding is injective on objects, and hence is an isomorphism from 𝐶 into a full subcategory of a presheaf category. (Contributed by Mario Carneiro, 30-Jan-2017.)
Hypotheses
Ref Expression
yoniso.y 𝑌 = (Yon‘𝐶)
yoniso.o 𝑂 = (oppCat‘𝐶)
yoniso.s 𝑆 = (SetCat‘𝑈)
yoniso.d 𝐷 = (CatCat‘𝑉)
yoniso.b 𝐵 = (Base‘𝐷)
yoniso.i 𝐼 = (Iso‘𝐷)
yoniso.q 𝑄 = (𝑂 FuncCat 𝑆)
yoniso.e 𝐸 = (𝑄s ran (1st𝑌))
yoniso.v (𝜑𝑉𝑋)
yoniso.c (𝜑𝐶𝐵)
yoniso.u (𝜑𝑈𝑊)
yoniso.h (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoniso.eb (𝜑𝐸𝐵)
yoniso.1 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘(𝑥(Hom ‘𝐶)𝑦)) = 𝑦)
Assertion
Ref Expression
yoniso (𝜑𝑌 ∈ (𝐶𝐼𝐸))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑦,𝐹   𝜑,𝑥,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑄(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥)   𝐼(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem yoniso
StepHypRef Expression
1 relfunc 16516 . . . 4 Rel (𝐶 Func 𝑄)
2 yoniso.y . . . . 5 𝑌 = (Yon‘𝐶)
3 yoniso.d . . . . . . . 8 𝐷 = (CatCat‘𝑉)
4 yoniso.b . . . . . . . 8 𝐵 = (Base‘𝐷)
5 yoniso.v . . . . . . . 8 (𝜑𝑉𝑋)
63, 4, 5catcbas 16741 . . . . . . 7 (𝜑𝐵 = (𝑉 ∩ Cat))
7 inss2 3832 . . . . . . 7 (𝑉 ∩ Cat) ⊆ Cat
86, 7syl6eqss 3653 . . . . . 6 (𝜑𝐵 ⊆ Cat)
9 yoniso.c . . . . . 6 (𝜑𝐶𝐵)
108, 9sseldd 3602 . . . . 5 (𝜑𝐶 ∈ Cat)
11 yoniso.o . . . . 5 𝑂 = (oppCat‘𝐶)
12 yoniso.s . . . . 5 𝑆 = (SetCat‘𝑈)
13 yoniso.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
14 yoniso.u . . . . 5 (𝜑𝑈𝑊)
15 yoniso.h . . . . 5 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
162, 10, 11, 12, 13, 14, 15yoncl 16896 . . . 4 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
17 1st2nd 7211 . . . 4 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → 𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
181, 16, 17sylancr 695 . . 3 (𝜑𝑌 = ⟨(1st𝑌), (2nd𝑌)⟩)
192, 11, 12, 13, 10, 14, 15yonffth 16918 . . . . 5 (𝜑𝑌 ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
2018, 19eqeltrrd 2701 . . . 4 (𝜑 → ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
21 eqid 2621 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
22 yoniso.e . . . . . 6 𝐸 = (𝑄s ran (1st𝑌))
2311oppccat 16376 . . . . . . . 8 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
2410, 23syl 17 . . . . . . 7 (𝜑𝑂 ∈ Cat)
2512setccat 16729 . . . . . . . 8 (𝑈𝑊𝑆 ∈ Cat)
2614, 25syl 17 . . . . . . 7 (𝜑𝑆 ∈ Cat)
2713, 24, 26fuccat 16624 . . . . . 6 (𝜑𝑄 ∈ Cat)
28 fvex 6199 . . . . . . . 8 (1st𝑌) ∈ V
2928rnex 7097 . . . . . . 7 ran (1st𝑌) ∈ V
3029a1i 11 . . . . . 6 (𝜑 → ran (1st𝑌) ∈ V)
3113fucbas 16614 . . . . . . . . 9 (𝑂 Func 𝑆) = (Base‘𝑄)
32 1st2ndbr 7214 . . . . . . . . . 10 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
331, 16, 32sylancr 695 . . . . . . . . 9 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
3421, 31, 33funcf1 16520 . . . . . . . 8 (𝜑 → (1st𝑌):(Base‘𝐶)⟶(𝑂 Func 𝑆))
35 ffn 6043 . . . . . . . 8 ((1st𝑌):(Base‘𝐶)⟶(𝑂 Func 𝑆) → (1st𝑌) Fn (Base‘𝐶))
3634, 35syl 17 . . . . . . 7 (𝜑 → (1st𝑌) Fn (Base‘𝐶))
37 dffn3 6052 . . . . . . 7 ((1st𝑌) Fn (Base‘𝐶) ↔ (1st𝑌):(Base‘𝐶)⟶ran (1st𝑌))
3836, 37sylib 208 . . . . . 6 (𝜑 → (1st𝑌):(Base‘𝐶)⟶ran (1st𝑌))
3921, 22, 27, 30, 38ffthres2c 16594 . . . . 5 (𝜑 → ((1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌) ↔ (1st𝑌)((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))(2nd𝑌)))
40 df-br 4652 . . . . 5 ((1st𝑌)((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄))(2nd𝑌) ↔ ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)))
41 df-br 4652 . . . . 5 ((1st𝑌)((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))(2nd𝑌) ↔ ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)))
4239, 40, 413bitr3g 302 . . . 4 (𝜑 → (⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝑄) ∩ (𝐶 Faith 𝑄)) ↔ ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸))))
4320, 42mpbid 222 . . 3 (𝜑 → ⟨(1st𝑌), (2nd𝑌)⟩ ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)))
4418, 43eqeltrd 2700 . 2 (𝜑𝑌 ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)))
45 fveq2 6189 . . . . . . . . 9 (((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → (1st ‘((1st𝑌)‘𝑥)) = (1st ‘((1st𝑌)‘𝑦)))
4645fveq1d 6191 . . . . . . . 8 (((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → ((1st ‘((1st𝑌)‘𝑥))‘𝑥) = ((1st ‘((1st𝑌)‘𝑦))‘𝑥))
4746fveq2d 6193 . . . . . . 7 (((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)))
48 simpl 473 . . . . . . . . . 10 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → 𝑥 ∈ (Base‘𝐶))
4948, 48jca 554 . . . . . . . . 9 ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) → (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶)))
50 eleq1 2688 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → (𝑦 ∈ (Base‘𝐶) ↔ 𝑥 ∈ (Base‘𝐶)))
5150anbi2d 740 . . . . . . . . . . . 12 (𝑦 = 𝑥 → ((𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶)) ↔ (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))))
5251anbi2d 740 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) ↔ (𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶)))))
53 fveq2 6189 . . . . . . . . . . . . . . 15 (𝑦 = 𝑥 → ((1st𝑌)‘𝑦) = ((1st𝑌)‘𝑥))
5453fveq2d 6193 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → (1st ‘((1st𝑌)‘𝑦)) = (1st ‘((1st𝑌)‘𝑥)))
5554fveq1d 6191 . . . . . . . . . . . . 13 (𝑦 = 𝑥 → ((1st ‘((1st𝑌)‘𝑦))‘𝑥) = ((1st ‘((1st𝑌)‘𝑥))‘𝑥))
5655fveq2d 6193 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) = (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)))
57 id 22 . . . . . . . . . . . 12 (𝑦 = 𝑥𝑦 = 𝑥)
5856, 57eqeq12d 2636 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) = 𝑦 ↔ (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = 𝑥))
5952, 58imbi12d 334 . . . . . . . . . 10 (𝑦 = 𝑥 → (((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) = 𝑦) ↔ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = 𝑥)))
6010adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
61 simprr 796 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
62 eqid 2621 . . . . . . . . . . . . 13 (Hom ‘𝐶) = (Hom ‘𝐶)
63 simprl 794 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
642, 21, 60, 61, 62, 63yon11 16898 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘((1st𝑌)‘𝑦))‘𝑥) = (𝑥(Hom ‘𝐶)𝑦))
6564fveq2d 6193 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) = (𝐹‘(𝑥(Hom ‘𝐶)𝑦)))
66 yoniso.1 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘(𝑥(Hom ‘𝐶)𝑦)) = 𝑦)
6765, 66eqtrd 2655 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) = 𝑦)
6859, 67chvarv 2262 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑥 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = 𝑥)
6949, 68sylan2 491 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = 𝑥)
7069, 67eqeq12d 2636 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝐹‘((1st ‘((1st𝑌)‘𝑥))‘𝑥)) = (𝐹‘((1st ‘((1st𝑌)‘𝑦))‘𝑥)) ↔ 𝑥 = 𝑦))
7147, 70syl5ib 234 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → 𝑥 = 𝑦))
7271ralrimivva 2970 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → 𝑥 = 𝑦))
73 dff13 6509 . . . . 5 ((1st𝑌):(Base‘𝐶)–1-1→(𝑂 Func 𝑆) ↔ ((1st𝑌):(Base‘𝐶)⟶(𝑂 Func 𝑆) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑦) → 𝑥 = 𝑦)))
7434, 72, 73sylanbrc 698 . . . 4 (𝜑 → (1st𝑌):(Base‘𝐶)–1-1→(𝑂 Func 𝑆))
75 f1f1orn 6146 . . . 4 ((1st𝑌):(Base‘𝐶)–1-1→(𝑂 Func 𝑆) → (1st𝑌):(Base‘𝐶)–1-1-onto→ran (1st𝑌))
7674, 75syl 17 . . 3 (𝜑 → (1st𝑌):(Base‘𝐶)–1-1-onto→ran (1st𝑌))
77 frn 6051 . . . . . 6 ((1st𝑌):(Base‘𝐶)⟶(𝑂 Func 𝑆) → ran (1st𝑌) ⊆ (𝑂 Func 𝑆))
7834, 77syl 17 . . . . 5 (𝜑 → ran (1st𝑌) ⊆ (𝑂 Func 𝑆))
7922, 31ressbas2 15925 . . . . 5 (ran (1st𝑌) ⊆ (𝑂 Func 𝑆) → ran (1st𝑌) = (Base‘𝐸))
8078, 79syl 17 . . . 4 (𝜑 → ran (1st𝑌) = (Base‘𝐸))
81 f1oeq3 6127 . . . 4 (ran (1st𝑌) = (Base‘𝐸) → ((1st𝑌):(Base‘𝐶)–1-1-onto→ran (1st𝑌) ↔ (1st𝑌):(Base‘𝐶)–1-1-onto→(Base‘𝐸)))
8280, 81syl 17 . . 3 (𝜑 → ((1st𝑌):(Base‘𝐶)–1-1-onto→ran (1st𝑌) ↔ (1st𝑌):(Base‘𝐶)–1-1-onto→(Base‘𝐸)))
8376, 82mpbid 222 . 2 (𝜑 → (1st𝑌):(Base‘𝐶)–1-1-onto→(Base‘𝐸))
84 eqid 2621 . . 3 (Base‘𝐸) = (Base‘𝐸)
85 yoniso.eb . . 3 (𝜑𝐸𝐵)
86 yoniso.i . . 3 𝐼 = (Iso‘𝐷)
873, 4, 21, 84, 5, 9, 85, 86catciso 16751 . 2 (𝜑 → (𝑌 ∈ (𝐶𝐼𝐸) ↔ (𝑌 ∈ ((𝐶 Full 𝐸) ∩ (𝐶 Faith 𝐸)) ∧ (1st𝑌):(Base‘𝐶)–1-1-onto→(Base‘𝐸))))
8844, 83, 87mpbir2and 957 1 (𝜑𝑌 ∈ (𝐶𝐼𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1482  wcel 1989  wral 2911  Vcvv 3198  cin 3571  wss 3572  cop 4181   class class class wbr 4651  ran crn 5113  Rel wrel 5117   Fn wfn 5881  wf 5882  1-1wf1 5883  1-1-ontowf1o 5885  cfv 5886  (class class class)co 6647  1st c1st 7163  2nd c2nd 7164  Basecbs 15851  s cress 15852  Hom chom 15946  Catccat 16319  Homf chomf 16321  oppCatcoppc 16365  Isociso 16400   Func cfunc 16508   Full cful 16556   Faith cfth 16557   FuncCat cfuc 16596  SetCatcsetc 16719  CatCatccatc 16738  Yoncyon 16883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-fal 1488  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-tpos 7349  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-map 7856  df-pm 7857  df-ixp 7906  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-fz 12324  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-hom 15960  df-cco 15961  df-cat 16323  df-cid 16324  df-homf 16325  df-comf 16326  df-oppc 16366  df-sect 16401  df-inv 16402  df-iso 16403  df-ssc 16464  df-resc 16465  df-subc 16466  df-func 16512  df-idfu 16513  df-cofu 16514  df-full 16558  df-fth 16559  df-nat 16597  df-fuc 16598  df-setc 16720  df-catc 16739  df-xpc 16806  df-1stf 16807  df-2ndf 16808  df-prf 16809  df-evlf 16847  df-curf 16848  df-hof 16884  df-yon 16885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator