Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3a Structured version   Visualization version   GIF version

Theorem yonedalem3a 17121
 Description: Lemma for yoneda 17130. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem3a.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
Assertion
Ref Expression
yonedalem3a (𝜑 → ((𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) ∧ (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋)))
Distinct variable groups:   𝑓,𝑎,𝑥, 1   𝐶,𝑎,𝑓,𝑥   𝐸,𝑎,𝑓   𝐹,𝑎,𝑓,𝑥   𝐵,𝑎,𝑓,𝑥   𝑂,𝑎,𝑓,𝑥   𝑆,𝑎,𝑓,𝑥   𝑄,𝑎,𝑓,𝑥   𝑇,𝑓   𝜑,𝑎,𝑓,𝑥   𝑌,𝑎,𝑓,𝑥   𝑍,𝑎,𝑓,𝑥   𝑋,𝑎,𝑓,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑓,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑓,𝑎)   𝐸(𝑥)   𝐻(𝑥,𝑓,𝑎)   𝑀(𝑥,𝑓,𝑎)   𝑉(𝑥,𝑓,𝑎)   𝑊(𝑥,𝑓,𝑎)

Proof of Theorem yonedalem3a
StepHypRef Expression
1 yonedalem21.f . . 3 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
2 yonedalem21.x . . 3 (𝜑𝑋𝐵)
3 simpr 471 . . . . . . 7 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑥 = 𝑋)
43fveq2d 6336 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → ((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑋))
5 simpl 468 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑓 = 𝐹)
64, 5oveq12d 6810 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) = (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
73fveq2d 6336 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑎𝑥) = (𝑎𝑋))
83fveq2d 6336 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → ( 1𝑥) = ( 1𝑋))
97, 8fveq12d 6338 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → ((𝑎𝑥)‘( 1𝑥)) = ((𝑎𝑋)‘( 1𝑋)))
106, 9mpteq12dv 4865 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))))
11 yonedalem3a.m . . . 4 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
12 ovex 6822 . . . . 5 (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ∈ V
1312mptex 6629 . . . 4 (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) ∈ V
1410, 11, 13ovmpt2a 6937 . . 3 ((𝐹 ∈ (𝑂 Func 𝑆) ∧ 𝑋𝐵) → (𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))))
151, 2, 14syl2anc 565 . 2 (𝜑 → (𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))))
16 eqid 2770 . . . . . . 7 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
17 simpr 471 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
1816, 17nat1st2nd 16817 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑎 ∈ (⟨(1st ‘((1st𝑌)‘𝑋)), (2nd ‘((1st𝑌)‘𝑋))⟩(𝑂 Nat 𝑆)⟨(1st𝐹), (2nd𝐹)⟩))
19 yoneda.o . . . . . . . 8 𝑂 = (oppCat‘𝐶)
20 yoneda.b . . . . . . . 8 𝐵 = (Base‘𝐶)
2119, 20oppcbas 16584 . . . . . . 7 𝐵 = (Base‘𝑂)
22 eqid 2770 . . . . . . 7 (Hom ‘𝑆) = (Hom ‘𝑆)
232adantr 466 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑋𝐵)
2416, 18, 21, 22, 23natcl 16819 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑋) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑋)))
25 yoneda.s . . . . . . 7 𝑆 = (SetCat‘𝑈)
26 yoneda.w . . . . . . . . 9 (𝜑𝑉𝑊)
27 yoneda.v . . . . . . . . . 10 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
2827unssbd 3940 . . . . . . . . 9 (𝜑𝑈𝑉)
2926, 28ssexd 4936 . . . . . . . 8 (𝜑𝑈 ∈ V)
3029adantr 466 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑈 ∈ V)
31 eqid 2770 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
32 relfunc 16728 . . . . . . . . . . . 12 Rel (𝑂 Func 𝑆)
33 yoneda.y . . . . . . . . . . . . 13 𝑌 = (Yon‘𝐶)
34 yoneda.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ Cat)
35 yoneda.u . . . . . . . . . . . . 13 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
3633, 20, 34, 2, 19, 25, 29, 35yon1cl 17110 . . . . . . . . . . . 12 (𝜑 → ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆))
37 1st2ndbr 7365 . . . . . . . . . . . 12 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
3832, 36, 37sylancr 567 . . . . . . . . . . 11 (𝜑 → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
3921, 31, 38funcf1 16732 . . . . . . . . . 10 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆))
4039, 2ffvelrnd 6503 . . . . . . . . 9 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ (Base‘𝑆))
4125, 29setcbas 16934 . . . . . . . . 9 (𝜑𝑈 = (Base‘𝑆))
4240, 41eleqtrrd 2852 . . . . . . . 8 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ 𝑈)
4342adantr 466 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ 𝑈)
44 1st2ndbr 7365 . . . . . . . . . . . 12 ((Rel (𝑂 Func 𝑆) ∧ 𝐹 ∈ (𝑂 Func 𝑆)) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
4532, 1, 44sylancr 567 . . . . . . . . . . 11 (𝜑 → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
4621, 31, 45funcf1 16732 . . . . . . . . . 10 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝑆))
4746, 2ffvelrnd 6503 . . . . . . . . 9 (𝜑 → ((1st𝐹)‘𝑋) ∈ (Base‘𝑆))
4847, 41eleqtrrd 2852 . . . . . . . 8 (𝜑 → ((1st𝐹)‘𝑋) ∈ 𝑈)
4948adantr 466 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st𝐹)‘𝑋) ∈ 𝑈)
5025, 30, 22, 43, 49elsetchom 16937 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑋) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑋)) ↔ (𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋)))
5124, 50mpbid 222 . . . . 5 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋))
52 eqid 2770 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
53 yoneda.1 . . . . . . . 8 1 = (Id‘𝐶)
5420, 52, 53, 34, 2catidcl 16549 . . . . . . 7 (𝜑 → ( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
5533, 20, 34, 2, 52, 2yon11 17111 . . . . . . 7 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) = (𝑋(Hom ‘𝐶)𝑋))
5654, 55eleqtrrd 2852 . . . . . 6 (𝜑 → ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋))
5756adantr 466 . . . . 5 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋))
5851, 57ffvelrnd 6503 . . . 4 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑋)‘( 1𝑋)) ∈ ((1st𝐹)‘𝑋))
59 eqid 2770 . . . 4 (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋)))
6058, 59fmptd 6527 . . 3 (𝜑 → (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋))
61 yoneda.t . . . . 5 𝑇 = (SetCat‘𝑉)
62 yoneda.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
63 yoneda.h . . . . 5 𝐻 = (HomF𝑄)
64 yoneda.r . . . . 5 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
65 yoneda.e . . . . 5 𝐸 = (𝑂 evalF 𝑆)
66 yoneda.z . . . . 5 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
6733, 20, 53, 19, 25, 61, 62, 63, 64, 65, 66, 34, 26, 35, 27, 1, 2yonedalem21 17120 . . . 4 (𝜑 → (𝐹(1st𝑍)𝑋) = (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
6819oppccat 16588 . . . . . 6 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
6934, 68syl 17 . . . . 5 (𝜑𝑂 ∈ Cat)
7025setccat 16941 . . . . . 6 (𝑈 ∈ V → 𝑆 ∈ Cat)
7129, 70syl 17 . . . . 5 (𝜑𝑆 ∈ Cat)
7265, 69, 71, 21, 1, 2evlf1 17067 . . . 4 (𝜑 → (𝐹(1st𝐸)𝑋) = ((1st𝐹)‘𝑋))
7315, 67, 72feq123d 6174 . . 3 (𝜑 → ((𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋) ↔ (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋)))
7460, 73mpbird 247 . 2 (𝜑 → (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋))
7515, 74jca 495 1 (𝜑 → ((𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) ∧ (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630   ∈ wcel 2144  Vcvv 3349   ∪ cun 3719   ⊆ wss 3721  ⟨cop 4320   class class class wbr 4784   ↦ cmpt 4861  ran crn 5250  Rel wrel 5254  ⟶wf 6027  ‘cfv 6031  (class class class)co 6792   ↦ cmpt2 6794  1st c1st 7312  2nd c2nd 7313  tpos ctpos 7502  Basecbs 16063  Hom chom 16159  Catccat 16531  Idccid 16532  Homf chomf 16533  oppCatcoppc 16577   Func cfunc 16720   ∘func ccofu 16722   Nat cnat 16807   FuncCat cfuc 16808  SetCatcsetc 16931   ×c cxpc 17015   1stF c1stf 17016   2ndF c2ndf 17017   ⟨,⟩F cprf 17018   evalF cevlf 17056  HomFchof 17095  Yoncyon 17096 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-hom 16173  df-cco 16174  df-cat 16535  df-cid 16536  df-homf 16537  df-comf 16538  df-oppc 16578  df-func 16724  df-cofu 16726  df-nat 16809  df-fuc 16810  df-setc 16932  df-xpc 17019  df-1stf 17020  df-2ndf 17021  df-prf 17022  df-evlf 17060  df-curf 17061  df-hof 17097  df-yon 17098 This theorem is referenced by:  yonedalem3b  17126  yonedalem3  17127  yonedainv  17128
 Copyright terms: Public domain W3C validator