MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem3a Structured version   Visualization version   GIF version

Theorem yonedalem3a 17121
Description: Lemma for yoneda 17130. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem3a.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
Assertion
Ref Expression
yonedalem3a (𝜑 → ((𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) ∧ (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋)))
Distinct variable groups:   𝑓,𝑎,𝑥, 1   𝐶,𝑎,𝑓,𝑥   𝐸,𝑎,𝑓   𝐹,𝑎,𝑓,𝑥   𝐵,𝑎,𝑓,𝑥   𝑂,𝑎,𝑓,𝑥   𝑆,𝑎,𝑓,𝑥   𝑄,𝑎,𝑓,𝑥   𝑇,𝑓   𝜑,𝑎,𝑓,𝑥   𝑌,𝑎,𝑓,𝑥   𝑍,𝑎,𝑓,𝑥   𝑋,𝑎,𝑓,𝑥
Allowed substitution hints:   𝑅(𝑥,𝑓,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑓,𝑎)   𝐸(𝑥)   𝐻(𝑥,𝑓,𝑎)   𝑀(𝑥,𝑓,𝑎)   𝑉(𝑥,𝑓,𝑎)   𝑊(𝑥,𝑓,𝑎)

Proof of Theorem yonedalem3a
StepHypRef Expression
1 yonedalem21.f . . 3 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
2 yonedalem21.x . . 3 (𝜑𝑋𝐵)
3 simpr 471 . . . . . . 7 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑥 = 𝑋)
43fveq2d 6336 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → ((1st𝑌)‘𝑥) = ((1st𝑌)‘𝑋))
5 simpl 468 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → 𝑓 = 𝐹)
64, 5oveq12d 6810 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) = (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
73fveq2d 6336 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑎𝑥) = (𝑎𝑋))
83fveq2d 6336 . . . . . 6 ((𝑓 = 𝐹𝑥 = 𝑋) → ( 1𝑥) = ( 1𝑋))
97, 8fveq12d 6338 . . . . 5 ((𝑓 = 𝐹𝑥 = 𝑋) → ((𝑎𝑥)‘( 1𝑥)) = ((𝑎𝑋)‘( 1𝑋)))
106, 9mpteq12dv 4865 . . . 4 ((𝑓 = 𝐹𝑥 = 𝑋) → (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))))
11 yonedalem3a.m . . . 4 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
12 ovex 6822 . . . . 5 (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ∈ V
1312mptex 6629 . . . 4 (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) ∈ V
1410, 11, 13ovmpt2a 6937 . . 3 ((𝐹 ∈ (𝑂 Func 𝑆) ∧ 𝑋𝐵) → (𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))))
151, 2, 14syl2anc 565 . 2 (𝜑 → (𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))))
16 eqid 2770 . . . . . . 7 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
17 simpr 471 . . . . . . . 8 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
1816, 17nat1st2nd 16817 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑎 ∈ (⟨(1st ‘((1st𝑌)‘𝑋)), (2nd ‘((1st𝑌)‘𝑋))⟩(𝑂 Nat 𝑆)⟨(1st𝐹), (2nd𝐹)⟩))
19 yoneda.o . . . . . . . 8 𝑂 = (oppCat‘𝐶)
20 yoneda.b . . . . . . . 8 𝐵 = (Base‘𝐶)
2119, 20oppcbas 16584 . . . . . . 7 𝐵 = (Base‘𝑂)
22 eqid 2770 . . . . . . 7 (Hom ‘𝑆) = (Hom ‘𝑆)
232adantr 466 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑋𝐵)
2416, 18, 21, 22, 23natcl 16819 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑋) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑋)))
25 yoneda.s . . . . . . 7 𝑆 = (SetCat‘𝑈)
26 yoneda.w . . . . . . . . 9 (𝜑𝑉𝑊)
27 yoneda.v . . . . . . . . . 10 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
2827unssbd 3940 . . . . . . . . 9 (𝜑𝑈𝑉)
2926, 28ssexd 4936 . . . . . . . 8 (𝜑𝑈 ∈ V)
3029adantr 466 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → 𝑈 ∈ V)
31 eqid 2770 . . . . . . . . . . 11 (Base‘𝑆) = (Base‘𝑆)
32 relfunc 16728 . . . . . . . . . . . 12 Rel (𝑂 Func 𝑆)
33 yoneda.y . . . . . . . . . . . . 13 𝑌 = (Yon‘𝐶)
34 yoneda.c . . . . . . . . . . . . 13 (𝜑𝐶 ∈ Cat)
35 yoneda.u . . . . . . . . . . . . 13 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
3633, 20, 34, 2, 19, 25, 29, 35yon1cl 17110 . . . . . . . . . . . 12 (𝜑 → ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆))
37 1st2ndbr 7365 . . . . . . . . . . . 12 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
3832, 36, 37sylancr 567 . . . . . . . . . . 11 (𝜑 → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
3921, 31, 38funcf1 16732 . . . . . . . . . 10 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆))
4039, 2ffvelrnd 6503 . . . . . . . . 9 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ (Base‘𝑆))
4125, 29setcbas 16934 . . . . . . . . 9 (𝜑𝑈 = (Base‘𝑆))
4240, 41eleqtrrd 2852 . . . . . . . 8 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ 𝑈)
4342adantr 466 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) ∈ 𝑈)
44 1st2ndbr 7365 . . . . . . . . . . . 12 ((Rel (𝑂 Func 𝑆) ∧ 𝐹 ∈ (𝑂 Func 𝑆)) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
4532, 1, 44sylancr 567 . . . . . . . . . . 11 (𝜑 → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
4621, 31, 45funcf1 16732 . . . . . . . . . 10 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝑆))
4746, 2ffvelrnd 6503 . . . . . . . . 9 (𝜑 → ((1st𝐹)‘𝑋) ∈ (Base‘𝑆))
4847, 41eleqtrrd 2852 . . . . . . . 8 (𝜑 → ((1st𝐹)‘𝑋) ∈ 𝑈)
4948adantr 466 . . . . . . 7 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((1st𝐹)‘𝑋) ∈ 𝑈)
5025, 30, 22, 43, 49elsetchom 16937 . . . . . 6 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑋) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑋)) ↔ (𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋)))
5124, 50mpbid 222 . . . . 5 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → (𝑎𝑋):((1st ‘((1st𝑌)‘𝑋))‘𝑋)⟶((1st𝐹)‘𝑋))
52 eqid 2770 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
53 yoneda.1 . . . . . . . 8 1 = (Id‘𝐶)
5420, 52, 53, 34, 2catidcl 16549 . . . . . . 7 (𝜑 → ( 1𝑋) ∈ (𝑋(Hom ‘𝐶)𝑋))
5533, 20, 34, 2, 52, 2yon11 17111 . . . . . . 7 (𝜑 → ((1st ‘((1st𝑌)‘𝑋))‘𝑋) = (𝑋(Hom ‘𝐶)𝑋))
5654, 55eleqtrrd 2852 . . . . . 6 (𝜑 → ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋))
5756adantr 466 . . . . 5 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ( 1𝑋) ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑋))
5851, 57ffvelrnd 6503 . . . 4 ((𝜑𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)) → ((𝑎𝑋)‘( 1𝑋)) ∈ ((1st𝐹)‘𝑋))
59 eqid 2770 . . . 4 (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋)))
6058, 59fmptd 6527 . . 3 (𝜑 → (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋))
61 yoneda.t . . . . 5 𝑇 = (SetCat‘𝑉)
62 yoneda.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
63 yoneda.h . . . . 5 𝐻 = (HomF𝑄)
64 yoneda.r . . . . 5 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
65 yoneda.e . . . . 5 𝐸 = (𝑂 evalF 𝑆)
66 yoneda.z . . . . 5 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
6733, 20, 53, 19, 25, 61, 62, 63, 64, 65, 66, 34, 26, 35, 27, 1, 2yonedalem21 17120 . . . 4 (𝜑 → (𝐹(1st𝑍)𝑋) = (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
6819oppccat 16588 . . . . . 6 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
6934, 68syl 17 . . . . 5 (𝜑𝑂 ∈ Cat)
7025setccat 16941 . . . . . 6 (𝑈 ∈ V → 𝑆 ∈ Cat)
7129, 70syl 17 . . . . 5 (𝜑𝑆 ∈ Cat)
7265, 69, 71, 21, 1, 2evlf1 17067 . . . 4 (𝜑 → (𝐹(1st𝐸)𝑋) = ((1st𝐹)‘𝑋))
7315, 67, 72feq123d 6174 . . 3 (𝜑 → ((𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋) ↔ (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))):(((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹)⟶((1st𝐹)‘𝑋)))
7460, 73mpbird 247 . 2 (𝜑 → (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋))
7515, 74jca 495 1 (𝜑 → ((𝐹𝑀𝑋) = (𝑎 ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↦ ((𝑎𝑋)‘( 1𝑋))) ∧ (𝐹𝑀𝑋):(𝐹(1st𝑍)𝑋)⟶(𝐹(1st𝐸)𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  Vcvv 3349  cun 3719  wss 3721  cop 4320   class class class wbr 4784  cmpt 4861  ran crn 5250  Rel wrel 5254  wf 6027  cfv 6031  (class class class)co 6792  cmpt2 6794  1st c1st 7312  2nd c2nd 7313  tpos ctpos 7502  Basecbs 16063  Hom chom 16159  Catccat 16531  Idccid 16532  Homf chomf 16533  oppCatcoppc 16577   Func cfunc 16720  func ccofu 16722   Nat cnat 16807   FuncCat cfuc 16808  SetCatcsetc 16931   ×c cxpc 17015   1stF c1stf 17016   2ndF c2ndf 17017   ⟨,⟩F cprf 17018   evalF cevlf 17056  HomFchof 17095  Yoncyon 17096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-hom 16173  df-cco 16174  df-cat 16535  df-cid 16536  df-homf 16537  df-comf 16538  df-oppc 16578  df-func 16724  df-cofu 16726  df-nat 16809  df-fuc 16810  df-setc 16932  df-xpc 17019  df-1stf 17020  df-2ndf 17021  df-prf 17022  df-evlf 17060  df-curf 17061  df-hof 17097  df-yon 17098
This theorem is referenced by:  yonedalem3b  17126  yonedalem3  17127  yonedainv  17128
  Copyright terms: Public domain W3C validator