Step | Hyp | Ref
| Expression |
1 | | yoneda.r |
. . 3
⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) |
2 | | eqid 2651 |
. . . 4
⊢ (𝑄 ×c
𝑂) = (𝑄 ×c 𝑂) |
3 | | yoneda.q |
. . . . 5
⊢ 𝑄 = (𝑂 FuncCat 𝑆) |
4 | 3 | fucbas 16667 |
. . . 4
⊢ (𝑂 Func 𝑆) = (Base‘𝑄) |
5 | | yoneda.o |
. . . . 5
⊢ 𝑂 = (oppCat‘𝐶) |
6 | | yoneda.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐶) |
7 | 5, 6 | oppcbas 16425 |
. . . 4
⊢ 𝐵 = (Base‘𝑂) |
8 | 2, 4, 7 | xpcbas 16865 |
. . 3
⊢ ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂)) |
9 | | eqid 2651 |
. . 3
⊢ ((𝑄 ×c
𝑂) Nat 𝑇) = ((𝑄 ×c 𝑂) Nat 𝑇) |
10 | | yoneda.y |
. . . . 5
⊢ 𝑌 = (Yon‘𝐶) |
11 | | yoneda.1 |
. . . . 5
⊢ 1 =
(Id‘𝐶) |
12 | | yoneda.s |
. . . . 5
⊢ 𝑆 = (SetCat‘𝑈) |
13 | | yoneda.t |
. . . . 5
⊢ 𝑇 = (SetCat‘𝑉) |
14 | | yoneda.h |
. . . . 5
⊢ 𝐻 =
(HomF‘𝑄) |
15 | | yoneda.e |
. . . . 5
⊢ 𝐸 = (𝑂 evalF 𝑆) |
16 | | yoneda.z |
. . . . 5
⊢ 𝑍 = (𝐻 ∘func
((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉
∘func (𝑄 2ndF 𝑂))
〈,〉F (𝑄 1stF 𝑂))) |
17 | | yoneda.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ Cat) |
18 | | yoneda.w |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ 𝑊) |
19 | | yoneda.u |
. . . . 5
⊢ (𝜑 → ran
(Homf ‘𝐶) ⊆ 𝑈) |
20 | | yoneda.v |
. . . . 5
⊢ (𝜑 → (ran
(Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
21 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 17, 18, 19, 20 | yonedalem1 16959 |
. . . 4
⊢ (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))) |
22 | 21 | simpld 474 |
. . 3
⊢ (𝜑 → 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) |
23 | 21 | simprd 478 |
. . 3
⊢ (𝜑 → 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) |
24 | | yonedainv.i |
. . 3
⊢ 𝐼 = (Inv‘𝑅) |
25 | | eqid 2651 |
. . 3
⊢
(Inv‘𝑇) =
(Inv‘𝑇) |
26 | | yoneda.m |
. . . 4
⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) |
27 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 17, 18, 19, 20, 26 | yonedalem3 16967 |
. . 3
⊢ (𝜑 → 𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸)) |
28 | 17 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → 𝐶 ∈ Cat) |
29 | 18 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → 𝑉 ∈ 𝑊) |
30 | 19 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ran (Homf
‘𝐶) ⊆ 𝑈) |
31 | 20 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ran (Homf
‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
32 | | simprl 809 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ℎ ∈ (𝑂 Func 𝑆)) |
33 | | simprr 811 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → 𝑤 ∈ 𝐵) |
34 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 28, 29, 30, 31, 32, 33, 26 | yonedalem3a 16961 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑀𝑤) = (𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤))) ∧ (ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶(ℎ(1st ‘𝐸)𝑤))) |
35 | 34 | simprd 478 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶(ℎ(1st ‘𝐸)𝑤)) |
36 | 28 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → 𝐶 ∈ Cat) |
37 | 29 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → 𝑉 ∈ 𝑊) |
38 | 30 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → ran (Homf
‘𝐶) ⊆ 𝑈) |
39 | 31 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → (ran (Homf
‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
40 | | simplrl 817 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → ℎ ∈ (𝑂 Func 𝑆)) |
41 | | simplrr 818 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → 𝑤 ∈ 𝐵) |
42 | | yonedainv.n |
. . . . . . . . . . . 12
⊢ 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) |
43 | | simpr 476 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) |
44 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 36, 37, 38, 39, 40, 41, 42, 43 | yonedalem4c 16964 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → ((ℎ𝑁𝑤)‘𝑏) ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ)) |
45 | | eqid 2651 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ ((1st
‘ℎ)‘𝑤) ↦ ((ℎ𝑁𝑤)‘𝑏)) = (𝑏 ∈ ((1st ‘ℎ)‘𝑤) ↦ ((ℎ𝑁𝑤)‘𝑏)) |
46 | 44, 45 | fmptd 6425 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (𝑏 ∈ ((1st ‘ℎ)‘𝑤) ↦ ((ℎ𝑁𝑤)‘𝑏)):((1st ‘ℎ)‘𝑤)⟶(((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ)) |
47 | | fvex 6239 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝐶)
∈ V |
48 | 6, 47 | eqeltri 2726 |
. . . . . . . . . . . . . . 15
⊢ 𝐵 ∈ V |
49 | 48 | mptex 6527 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢))) ∈ V |
50 | | eqid 2651 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ((1st
‘ℎ)‘𝑤) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st ‘ℎ)‘𝑤) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢)))) |
51 | 49, 50 | fnmpti 6060 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ ((1st
‘ℎ)‘𝑤) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢)))) Fn ((1st ‘ℎ)‘𝑤) |
52 | | simpl 472 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑓 = ℎ ∧ 𝑥 = 𝑤) → 𝑓 = ℎ) |
53 | 52 | fveq2d 6233 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 = ℎ ∧ 𝑥 = 𝑤) → (1st ‘𝑓) = (1st ‘ℎ)) |
54 | | simpr 476 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑓 = ℎ ∧ 𝑥 = 𝑤) → 𝑥 = 𝑤) |
55 | 53, 54 | fveq12d 6235 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 = ℎ ∧ 𝑥 = 𝑤) → ((1st ‘𝑓)‘𝑥) = ((1st ‘ℎ)‘𝑤)) |
56 | | simplr 807 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝑤) |
57 | 56 | oveq2d 6706 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐶)𝑤)) |
58 | | simpll 805 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → 𝑓 = ℎ) |
59 | 58 | fveq2d 6233 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → (2nd ‘𝑓) = (2nd ‘ℎ)) |
60 | | eqidd 2652 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → 𝑦 = 𝑦) |
61 | 59, 56, 60 | oveq123d 6711 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → (𝑥(2nd ‘𝑓)𝑦) = (𝑤(2nd ‘ℎ)𝑦)) |
62 | 61 | fveq1d 6231 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → ((𝑥(2nd ‘𝑓)𝑦)‘𝑔) = ((𝑤(2nd ‘ℎ)𝑦)‘𝑔)) |
63 | 62 | fveq1d 6231 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢) = (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢)) |
64 | 57, 63 | mpteq12dv 4766 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑓 = ℎ ∧ 𝑥 = 𝑤) ∧ 𝑦 ∈ 𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢))) |
65 | 64 | mpteq2dva 4777 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑓 = ℎ ∧ 𝑥 = 𝑤) → (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))) = (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢)))) |
66 | 55, 65 | mpteq12dv 4766 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 = ℎ ∧ 𝑥 = 𝑤) → (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st ‘ℎ)‘𝑤) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢))))) |
67 | | fvex 6239 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘ℎ)‘𝑤) ∈ V |
68 | 67 | mptex 6527 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 ∈ ((1st
‘ℎ)‘𝑤) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢)))) ∈ V |
69 | 66, 42, 68 | ovmpt2a 6833 |
. . . . . . . . . . . . . . 15
⊢ ((ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵) → (ℎ𝑁𝑤) = (𝑢 ∈ ((1st ‘ℎ)‘𝑤) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢))))) |
70 | 69 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ𝑁𝑤) = (𝑢 ∈ ((1st ‘ℎ)‘𝑤) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢))))) |
71 | 70 | fneq1d 6019 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑁𝑤) Fn ((1st ‘ℎ)‘𝑤) ↔ (𝑢 ∈ ((1st ‘ℎ)‘𝑤) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd ‘ℎ)𝑦)‘𝑔)‘𝑢)))) Fn ((1st ‘ℎ)‘𝑤))) |
72 | 51, 71 | mpbiri 248 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ𝑁𝑤) Fn ((1st ‘ℎ)‘𝑤)) |
73 | | dffn5 6280 |
. . . . . . . . . . . 12
⊢ ((ℎ𝑁𝑤) Fn ((1st ‘ℎ)‘𝑤) ↔ (ℎ𝑁𝑤) = (𝑏 ∈ ((1st ‘ℎ)‘𝑤) ↦ ((ℎ𝑁𝑤)‘𝑏))) |
74 | 72, 73 | sylib 208 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ𝑁𝑤) = (𝑏 ∈ ((1st ‘ℎ)‘𝑤) ↦ ((ℎ𝑁𝑤)‘𝑏))) |
75 | 5 | oppccat 16429 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
76 | 17, 75 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑂 ∈ Cat) |
77 | 76 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → 𝑂 ∈ Cat) |
78 | 20 | unssbd 3824 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑈 ⊆ 𝑉) |
79 | 18, 78 | ssexd 4838 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑈 ∈ V) |
80 | 12 | setccat 16782 |
. . . . . . . . . . . . . 14
⊢ (𝑈 ∈ V → 𝑆 ∈ Cat) |
81 | 79, 80 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ∈ Cat) |
82 | 81 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → 𝑆 ∈ Cat) |
83 | 15, 77, 82, 7, 32, 33 | evlf1 16907 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ(1st ‘𝐸)𝑤) = ((1st ‘ℎ)‘𝑤)) |
84 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 28, 29, 30, 31, 32, 33 | yonedalem21 16960 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ(1st ‘𝑍)𝑤) = (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ)) |
85 | 74, 83, 84 | feq123d 6072 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑁𝑤):(ℎ(1st ‘𝐸)𝑤)⟶(ℎ(1st ‘𝑍)𝑤) ↔ (𝑏 ∈ ((1st ‘ℎ)‘𝑤) ↦ ((ℎ𝑁𝑤)‘𝑏)):((1st ‘ℎ)‘𝑤)⟶(((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ))) |
86 | 46, 85 | mpbird 247 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ𝑁𝑤):(ℎ(1st ‘𝐸)𝑤)⟶(ℎ(1st ‘𝑍)𝑤)) |
87 | | fcompt 6440 |
. . . . . . . . . . 11
⊢ (((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶(ℎ(1st ‘𝐸)𝑤) ∧ (ℎ𝑁𝑤):(ℎ(1st ‘𝐸)𝑤)⟶(ℎ(1st ‘𝑍)𝑤)) → ((ℎ𝑀𝑤) ∘ (ℎ𝑁𝑤)) = (𝑘 ∈ (ℎ(1st ‘𝐸)𝑤) ↦ ((ℎ𝑀𝑤)‘((ℎ𝑁𝑤)‘𝑘)))) |
88 | 35, 86, 87 | syl2anc 694 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑀𝑤) ∘ (ℎ𝑁𝑤)) = (𝑘 ∈ (ℎ(1st ‘𝐸)𝑤) ↦ ((ℎ𝑀𝑤)‘((ℎ𝑁𝑤)‘𝑘)))) |
89 | 83 | eleq2d 2716 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (𝑘 ∈ (ℎ(1st ‘𝐸)𝑤) ↔ 𝑘 ∈ ((1st ‘ℎ)‘𝑤))) |
90 | 89 | biimpa 500 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ (ℎ(1st ‘𝐸)𝑤)) → 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) |
91 | 28 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → 𝐶 ∈ Cat) |
92 | 29 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → 𝑉 ∈ 𝑊) |
93 | 30 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ran (Homf
‘𝐶) ⊆ 𝑈) |
94 | 31 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → (ran (Homf
‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
95 | | simplrl 817 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ℎ ∈ (𝑂 Func 𝑆)) |
96 | | simplrr 818 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → 𝑤 ∈ 𝐵) |
97 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 91, 92, 93, 94, 95, 96, 26 | yonedalem3a 16961 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((ℎ𝑀𝑤) = (𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤))) ∧ (ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶(ℎ(1st ‘𝐸)𝑤))) |
98 | 97 | simpld 474 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → (ℎ𝑀𝑤) = (𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤)))) |
99 | 98 | fveq1d 6231 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((ℎ𝑀𝑤)‘((ℎ𝑁𝑤)‘𝑘)) = ((𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤)))‘((ℎ𝑁𝑤)‘𝑘))) |
100 | | fvexd 6241 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ ((1st ‘ℎ)‘𝑤)) → ((ℎ𝑁𝑤)‘𝑏) ∈ V) |
101 | 100, 74, 44 | fmpt2d 6433 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ𝑁𝑤):((1st ‘ℎ)‘𝑤)⟶(((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ)) |
102 | 101 | ffvelrnda 6399 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((ℎ𝑁𝑤)‘𝑘) ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ)) |
103 | | fveq1 6228 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = ((ℎ𝑁𝑤)‘𝑘) → (𝑎‘𝑤) = (((ℎ𝑁𝑤)‘𝑘)‘𝑤)) |
104 | 103 | fveq1d 6231 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 = ((ℎ𝑁𝑤)‘𝑘) → ((𝑎‘𝑤)‘( 1 ‘𝑤)) = ((((ℎ𝑁𝑤)‘𝑘)‘𝑤)‘( 1 ‘𝑤))) |
105 | | eqid 2651 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ (((1st
‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤))) = (𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤))) |
106 | | fvex 6239 |
. . . . . . . . . . . . . . . 16
⊢ ((((ℎ𝑁𝑤)‘𝑘)‘𝑤)‘( 1 ‘𝑤)) ∈ V |
107 | 104, 105,
106 | fvmpt 6321 |
. . . . . . . . . . . . . . 15
⊢ (((ℎ𝑁𝑤)‘𝑘) ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) → ((𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤)))‘((ℎ𝑁𝑤)‘𝑘)) = ((((ℎ𝑁𝑤)‘𝑘)‘𝑤)‘( 1 ‘𝑤))) |
108 | 102, 107 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤)))‘((ℎ𝑁𝑤)‘𝑘)) = ((((ℎ𝑁𝑤)‘𝑘)‘𝑤)‘( 1 ‘𝑤))) |
109 | | simpr 476 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) |
110 | | eqid 2651 |
. . . . . . . . . . . . . . . . 17
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
111 | 6, 110, 11, 91, 96 | catidcl 16390 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ( 1 ‘𝑤) ∈ (𝑤(Hom ‘𝐶)𝑤)) |
112 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 91, 92, 93, 94, 95, 96, 42, 109, 96, 111 | yonedalem4b 16963 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((((ℎ𝑁𝑤)‘𝑘)‘𝑤)‘( 1 ‘𝑤)) = (((𝑤(2nd ‘ℎ)𝑤)‘( 1 ‘𝑤))‘𝑘)) |
113 | | eqid 2651 |
. . . . . . . . . . . . . . . . . 18
⊢
(Id‘𝑂) =
(Id‘𝑂) |
114 | | eqid 2651 |
. . . . . . . . . . . . . . . . . 18
⊢
(Id‘𝑆) =
(Id‘𝑆) |
115 | | relfunc 16569 |
. . . . . . . . . . . . . . . . . . 19
⊢ Rel
(𝑂 Func 𝑆) |
116 | | 1st2ndbr 7261 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Rel
(𝑂 Func 𝑆) ∧ ℎ ∈ (𝑂 Func 𝑆)) → (1st ‘ℎ)(𝑂 Func 𝑆)(2nd ‘ℎ)) |
117 | 115, 95, 116 | sylancr 696 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → (1st ‘ℎ)(𝑂 Func 𝑆)(2nd ‘ℎ)) |
118 | 7, 113, 114, 117, 96 | funcid 16577 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((𝑤(2nd ‘ℎ)𝑤)‘((Id‘𝑂)‘𝑤)) = ((Id‘𝑆)‘((1st ‘ℎ)‘𝑤))) |
119 | 5, 11 | oppcid 16428 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐶 ∈ Cat →
(Id‘𝑂) = 1
) |
120 | 91, 119 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → (Id‘𝑂) = 1 ) |
121 | 120 | fveq1d 6231 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((Id‘𝑂)‘𝑤) = ( 1 ‘𝑤)) |
122 | 121 | fveq2d 6233 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((𝑤(2nd ‘ℎ)𝑤)‘((Id‘𝑂)‘𝑤)) = ((𝑤(2nd ‘ℎ)𝑤)‘( 1 ‘𝑤))) |
123 | 79 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → 𝑈 ∈ V) |
124 | | eqid 2651 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(Base‘𝑆) =
(Base‘𝑆) |
125 | 7, 124, 117 | funcf1 16573 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → (1st ‘ℎ):𝐵⟶(Base‘𝑆)) |
126 | 12, 123 | setcbas 16775 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → 𝑈 = (Base‘𝑆)) |
127 | 126 | feq3d 6070 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((1st ‘ℎ):𝐵⟶𝑈 ↔ (1st ‘ℎ):𝐵⟶(Base‘𝑆))) |
128 | 125, 127 | mpbird 247 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → (1st ‘ℎ):𝐵⟶𝑈) |
129 | 128, 96 | ffvelrnd 6400 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((1st ‘ℎ)‘𝑤) ∈ 𝑈) |
130 | 12, 114, 123, 129 | setcid 16783 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((Id‘𝑆)‘((1st ‘ℎ)‘𝑤)) = ( I ↾ ((1st
‘ℎ)‘𝑤))) |
131 | 118, 122,
130 | 3eqtr3d 2693 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((𝑤(2nd ‘ℎ)𝑤)‘( 1 ‘𝑤)) = ( I ↾ ((1st
‘ℎ)‘𝑤))) |
132 | 131 | fveq1d 6231 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → (((𝑤(2nd ‘ℎ)𝑤)‘( 1 ‘𝑤))‘𝑘) = (( I ↾ ((1st
‘ℎ)‘𝑤))‘𝑘)) |
133 | | fvresi 6480 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ ((1st
‘ℎ)‘𝑤) → (( I ↾
((1st ‘ℎ)‘𝑤))‘𝑘) = 𝑘) |
134 | 133 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → (( I ↾ ((1st
‘ℎ)‘𝑤))‘𝑘) = 𝑘) |
135 | 112, 132,
134 | 3eqtrd 2689 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((((ℎ𝑁𝑤)‘𝑘)‘𝑤)‘( 1 ‘𝑤)) = 𝑘) |
136 | 99, 108, 135 | 3eqtrd 2689 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ ((1st ‘ℎ)‘𝑤)) → ((ℎ𝑀𝑤)‘((ℎ𝑁𝑤)‘𝑘)) = 𝑘) |
137 | 90, 136 | syldan 486 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑘 ∈ (ℎ(1st ‘𝐸)𝑤)) → ((ℎ𝑀𝑤)‘((ℎ𝑁𝑤)‘𝑘)) = 𝑘) |
138 | 137 | mpteq2dva 4777 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (𝑘 ∈ (ℎ(1st ‘𝐸)𝑤) ↦ ((ℎ𝑀𝑤)‘((ℎ𝑁𝑤)‘𝑘))) = (𝑘 ∈ (ℎ(1st ‘𝐸)𝑤) ↦ 𝑘)) |
139 | | mptresid 5491 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (ℎ(1st ‘𝐸)𝑤) ↦ 𝑘) = ( I ↾ (ℎ(1st ‘𝐸)𝑤)) |
140 | 138, 139 | syl6eq 2701 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (𝑘 ∈ (ℎ(1st ‘𝐸)𝑤) ↦ ((ℎ𝑀𝑤)‘((ℎ𝑁𝑤)‘𝑘))) = ( I ↾ (ℎ(1st ‘𝐸)𝑤))) |
141 | 88, 140 | eqtrd 2685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑀𝑤) ∘ (ℎ𝑁𝑤)) = ( I ↾ (ℎ(1st ‘𝐸)𝑤))) |
142 | | fcompt 6440 |
. . . . . . . . . . 11
⊢ (((ℎ𝑁𝑤):(ℎ(1st ‘𝐸)𝑤)⟶(ℎ(1st ‘𝑍)𝑤) ∧ (ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶(ℎ(1st ‘𝐸)𝑤)) → ((ℎ𝑁𝑤) ∘ (ℎ𝑀𝑤)) = (𝑏 ∈ (ℎ(1st ‘𝑍)𝑤) ↦ ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏)))) |
143 | 86, 35, 142 | syl2anc 694 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑁𝑤) ∘ (ℎ𝑀𝑤)) = (𝑏 ∈ (ℎ(1st ‘𝑍)𝑤) ↦ ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏)))) |
144 | | eqid 2651 |
. . . . . . . . . . . . . 14
⊢ (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆) |
145 | 28 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → 𝐶 ∈ Cat) |
146 | 29 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → 𝑉 ∈ 𝑊) |
147 | 30 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ran (Homf
‘𝐶) ⊆ 𝑈) |
148 | 31 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (ran (Homf
‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
149 | | simplrl 817 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ℎ ∈ (𝑂 Func 𝑆)) |
150 | | simplrr 818 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → 𝑤 ∈ 𝐵) |
151 | 83 | feq3d 6070 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶(ℎ(1st ‘𝐸)𝑤) ↔ (ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶((1st ‘ℎ)‘𝑤))) |
152 | 35, 151 | mpbid 222 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶((1st ‘ℎ)‘𝑤)) |
153 | 152 | ffvelrnda 6399 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((ℎ𝑀𝑤)‘𝑏) ∈ ((1st ‘ℎ)‘𝑤)) |
154 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 145, 146, 147, 148, 149, 150, 42, 153 | yonedalem4c 16964 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏)) ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ)) |
155 | 144, 154 | nat1st2nd 16658 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏)) ∈ (〈(1st
‘((1st ‘𝑌)‘𝑤)), (2nd ‘((1st
‘𝑌)‘𝑤))〉(𝑂 Nat 𝑆)〈(1st ‘ℎ), (2nd ‘ℎ)〉)) |
156 | 144, 155,
7 | natfn 16661 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏)) Fn 𝐵) |
157 | 84 | eleq2d 2716 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (𝑏 ∈ (ℎ(1st ‘𝑍)𝑤) ↔ 𝑏 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ))) |
158 | 157 | biimpa 500 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → 𝑏 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ)) |
159 | 144, 158 | nat1st2nd 16658 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → 𝑏 ∈ (〈(1st
‘((1st ‘𝑌)‘𝑤)), (2nd ‘((1st
‘𝑌)‘𝑤))〉(𝑂 Nat 𝑆)〈(1st ‘ℎ), (2nd ‘ℎ)〉)) |
160 | 144, 159,
7 | natfn 16661 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → 𝑏 Fn 𝐵) |
161 | 145 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → 𝐶 ∈ Cat) |
162 | 150 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → 𝑤 ∈ 𝐵) |
163 | | simpr 476 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝐵) |
164 | 10, 6, 161, 162, 110, 163 | yon11 16951 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) = (𝑧(Hom ‘𝐶)𝑤)) |
165 | 164 | eleq2d 2716 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (𝑘 ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) ↔ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))) |
166 | 165 | biimpa 500 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧)) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) |
167 | 161 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝐶 ∈ Cat) |
168 | 146 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑉 ∈ 𝑊) |
169 | 147 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ran (Homf
‘𝐶) ⊆ 𝑈) |
170 | 148 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (ran (Homf
‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
171 | 149 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ℎ ∈ (𝑂 Func 𝑆)) |
172 | 162 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑤 ∈ 𝐵) |
173 | 153 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((ℎ𝑀𝑤)‘𝑏) ∈ ((1st ‘ℎ)‘𝑤)) |
174 | | simplr 807 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑧 ∈ 𝐵) |
175 | | simpr 476 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) |
176 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 167, 168, 169, 170, 171, 172, 42, 173, 174, 175 | yonedalem4b 16963 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧)‘𝑘) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)‘((ℎ𝑀𝑤)‘𝑏))) |
177 | 10, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 167, 168, 169, 170, 171, 172, 26 | yonedalem3a 16961 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((ℎ𝑀𝑤) = (𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤))) ∧ (ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶(ℎ(1st ‘𝐸)𝑤))) |
178 | 177 | simpld 474 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (ℎ𝑀𝑤) = (𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤)))) |
179 | 178 | fveq1d 6231 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((ℎ𝑀𝑤)‘𝑏) = ((𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤)))‘𝑏)) |
180 | 158 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑏 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ)) |
181 | | fveq1 6228 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑎 = 𝑏 → (𝑎‘𝑤) = (𝑏‘𝑤)) |
182 | 181 | fveq1d 6231 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑎 = 𝑏 → ((𝑎‘𝑤)‘( 1 ‘𝑤)) = ((𝑏‘𝑤)‘( 1 ‘𝑤))) |
183 | | fvex 6239 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑏‘𝑤)‘( 1 ‘𝑤)) ∈ V |
184 | 182, 105,
183 | fvmpt 6321 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑏 ∈ (((1st
‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) → ((𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤)))‘𝑏) = ((𝑏‘𝑤)‘( 1 ‘𝑤))) |
185 | 180, 184 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑎 ∈ (((1st ‘𝑌)‘𝑤)(𝑂 Nat 𝑆)ℎ) ↦ ((𝑎‘𝑤)‘( 1 ‘𝑤)))‘𝑏) = ((𝑏‘𝑤)‘( 1 ‘𝑤))) |
186 | 179, 185 | eqtrd 2685 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((ℎ𝑀𝑤)‘𝑏) = ((𝑏‘𝑤)‘( 1 ‘𝑤))) |
187 | 186 | fveq2d 6233 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)‘((ℎ𝑀𝑤)‘𝑏)) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)‘((𝑏‘𝑤)‘( 1 ‘𝑤)))) |
188 | 159 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑏 ∈ (〈(1st
‘((1st ‘𝑌)‘𝑤)), (2nd ‘((1st
‘𝑌)‘𝑤))〉(𝑂 Nat 𝑆)〈(1st ‘ℎ), (2nd ‘ℎ)〉)) |
189 | | eqid 2651 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (Hom
‘𝑂) = (Hom
‘𝑂) |
190 | | eqid 2651 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(comp‘𝑆) =
(comp‘𝑆) |
191 | 110, 5 | oppchom 16422 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑤(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑤) |
192 | 175, 191 | syl6eleqr 2741 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑘 ∈ (𝑤(Hom ‘𝑂)𝑧)) |
193 | 144, 188,
7, 189, 190, 172, 174, 192 | nati 16662 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏‘𝑧)(〈((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤), ((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧)〉(comp‘𝑆)((1st ‘ℎ)‘𝑧))((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)(〈((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤), ((1st ‘ℎ)‘𝑤)〉(comp‘𝑆)((1st ‘ℎ)‘𝑧))(𝑏‘𝑤))) |
194 | 79 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → 𝑈 ∈ V) |
195 | 194 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → 𝑈 ∈ V) |
196 | 195 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑈 ∈ V) |
197 | | relfunc 16569 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ Rel
(𝐶 Func 𝑄) |
198 | 10, 17, 5, 12, 3, 79, 19 | yoncl 16949 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (𝜑 → 𝑌 ∈ (𝐶 Func 𝑄)) |
199 | | 1st2ndbr 7261 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ ((Rel
(𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st ‘𝑌)(𝐶 Func 𝑄)(2nd ‘𝑌)) |
200 | 197, 198,
199 | sylancr 696 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝜑 → (1st
‘𝑌)(𝐶 Func 𝑄)(2nd ‘𝑌)) |
201 | 6, 4, 200 | funcf1 16573 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝜑 → (1st
‘𝑌):𝐵⟶(𝑂 Func 𝑆)) |
202 | 201 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (1st ‘𝑌):𝐵⟶(𝑂 Func 𝑆)) |
203 | 202, 150 | ffvelrnd 6400 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((1st ‘𝑌)‘𝑤) ∈ (𝑂 Func 𝑆)) |
204 | | 1st2ndbr 7261 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((Rel
(𝑂 Func 𝑆) ∧ ((1st ‘𝑌)‘𝑤) ∈ (𝑂 Func 𝑆)) → (1st
‘((1st ‘𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st
‘𝑌)‘𝑤))) |
205 | 115, 203,
204 | sylancr 696 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (1st
‘((1st ‘𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st
‘𝑌)‘𝑤))) |
206 | 7, 124, 205 | funcf1 16573 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (1st
‘((1st ‘𝑌)‘𝑤)):𝐵⟶(Base‘𝑆)) |
207 | 12, 194 | setcbas 16775 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → 𝑈 = (Base‘𝑆)) |
208 | 207 | feq3d 6070 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((1st
‘((1st ‘𝑌)‘𝑤)):𝐵⟶𝑈 ↔ (1st
‘((1st ‘𝑌)‘𝑤)):𝐵⟶(Base‘𝑆))) |
209 | 206, 208 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (1st
‘((1st ‘𝑌)‘𝑤)):𝐵⟶𝑈) |
210 | 209, 150 | ffvelrnd 6400 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤) ∈ 𝑈) |
211 | 210 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤) ∈ 𝑈) |
212 | 209 | ffvelrnda 6399 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) ∈ 𝑈) |
213 | 212 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) ∈ 𝑈) |
214 | 115, 149,
116 | sylancr 696 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (1st ‘ℎ)(𝑂 Func 𝑆)(2nd ‘ℎ)) |
215 | 7, 124, 214 | funcf1 16573 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (1st ‘ℎ):𝐵⟶(Base‘𝑆)) |
216 | 207 | feq3d 6070 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((1st ‘ℎ):𝐵⟶𝑈 ↔ (1st ‘ℎ):𝐵⟶(Base‘𝑆))) |
217 | 215, 216 | mpbird 247 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (1st ‘ℎ):𝐵⟶𝑈) |
218 | 217 | ffvelrnda 6399 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → ((1st ‘ℎ)‘𝑧) ∈ 𝑈) |
219 | 218 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st ‘ℎ)‘𝑧) ∈ 𝑈) |
220 | | eqid 2651 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (Hom
‘𝑆) = (Hom
‘𝑆) |
221 | 205 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st
‘((1st ‘𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st
‘𝑌)‘𝑤))) |
222 | 7, 189, 220, 221, 172, 174 | funcf2 16575 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧):(𝑤(Hom ‘𝑂)𝑧)⟶(((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧))) |
223 | 222, 192 | ffvelrnd 6400 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘) ∈ (((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧))) |
224 | 12, 196, 220, 211, 213 | elsetchom 16778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘) ∈ (((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧)) ↔ ((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑤)⟶((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧))) |
225 | 223, 224 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑤)⟶((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧)) |
226 | 159 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → 𝑏 ∈ (〈(1st
‘((1st ‘𝑌)‘𝑤)), (2nd ‘((1st
‘𝑌)‘𝑤))〉(𝑂 Nat 𝑆)〈(1st ‘ℎ), (2nd ‘ℎ)〉)) |
227 | 144, 226,
7, 220, 163 | natcl 16660 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (𝑏‘𝑧) ∈ (((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st ‘ℎ)‘𝑧))) |
228 | 12, 195, 220, 212, 218 | elsetchom 16778 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → ((𝑏‘𝑧) ∈ (((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st ‘ℎ)‘𝑧)) ↔ (𝑏‘𝑧):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧)⟶((1st ‘ℎ)‘𝑧))) |
229 | 227, 228 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (𝑏‘𝑧):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧)⟶((1st ‘ℎ)‘𝑧)) |
230 | 229 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑏‘𝑧):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧)⟶((1st ‘ℎ)‘𝑧)) |
231 | 12, 196, 190, 211, 213, 219, 225, 230 | setcco 16780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏‘𝑧)(〈((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤), ((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧)〉(comp‘𝑆)((1st ‘ℎ)‘𝑧))((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)) = ((𝑏‘𝑧) ∘ ((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘))) |
232 | 217, 150 | ffvelrnd 6400 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((1st ‘ℎ)‘𝑤) ∈ 𝑈) |
233 | 232 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st ‘ℎ)‘𝑤) ∈ 𝑈) |
234 | 144, 159,
7, 220, 150 | natcl 16660 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (𝑏‘𝑤) ∈ (((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘ℎ)‘𝑤))) |
235 | 12, 194, 220, 210, 232 | elsetchom 16778 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((𝑏‘𝑤) ∈ (((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘ℎ)‘𝑤)) ↔ (𝑏‘𝑤):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑤)⟶((1st ‘ℎ)‘𝑤))) |
236 | 234, 235 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → (𝑏‘𝑤):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑤)⟶((1st ‘ℎ)‘𝑤)) |
237 | 236 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑏‘𝑤):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑤)⟶((1st ‘ℎ)‘𝑤)) |
238 | 115, 171,
116 | sylancr 696 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘ℎ)(𝑂 Func 𝑆)(2nd ‘ℎ)) |
239 | 7, 189, 220, 238, 172, 174 | funcf2 16575 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑤(2nd ‘ℎ)𝑧):(𝑤(Hom ‘𝑂)𝑧)⟶(((1st ‘ℎ)‘𝑤)(Hom ‘𝑆)((1st ‘ℎ)‘𝑧))) |
240 | 239, 192 | ffvelrnd 6400 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd ‘ℎ)𝑧)‘𝑘) ∈ (((1st ‘ℎ)‘𝑤)(Hom ‘𝑆)((1st ‘ℎ)‘𝑧))) |
241 | 12, 196, 220, 233, 219 | elsetchom 16778 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘ℎ)𝑧)‘𝑘) ∈ (((1st ‘ℎ)‘𝑤)(Hom ‘𝑆)((1st ‘ℎ)‘𝑧)) ↔ ((𝑤(2nd ‘ℎ)𝑧)‘𝑘):((1st ‘ℎ)‘𝑤)⟶((1st ‘ℎ)‘𝑧))) |
242 | 240, 241 | mpbid 222 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd ‘ℎ)𝑧)‘𝑘):((1st ‘ℎ)‘𝑤)⟶((1st ‘ℎ)‘𝑧)) |
243 | 12, 196, 190, 211, 233, 219, 237, 242 | setcco 16780 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)(〈((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤), ((1st ‘ℎ)‘𝑤)〉(comp‘𝑆)((1st ‘ℎ)‘𝑧))(𝑏‘𝑤)) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘) ∘ (𝑏‘𝑤))) |
244 | 193, 231,
243 | 3eqtr3d 2693 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏‘𝑧) ∘ ((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘) ∘ (𝑏‘𝑤))) |
245 | 244 | fveq1d 6231 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑏‘𝑧) ∘ ((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘))‘( 1 ‘𝑤)) = ((((𝑤(2nd ‘ℎ)𝑧)‘𝑘) ∘ (𝑏‘𝑤))‘( 1 ‘𝑤))) |
246 | 6, 110, 11, 145, 150 | catidcl 16390 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ( 1 ‘𝑤) ∈ (𝑤(Hom ‘𝐶)𝑤)) |
247 | 10, 6, 145, 150, 110, 150 | yon11 16951 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤) = (𝑤(Hom ‘𝐶)𝑤)) |
248 | 246, 247 | eleqtrrd 2733 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ( 1 ‘𝑤) ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤)) |
249 | 248 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ( 1 ‘𝑤) ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤)) |
250 | | fvco3 6314 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑤(2nd
‘((1st ‘𝑌)‘𝑤))𝑧)‘𝑘):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑤)⟶((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) ∧ ( 1 ‘𝑤) ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤)) → (((𝑏‘𝑧) ∘ ((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘))‘( 1 ‘𝑤)) = ((𝑏‘𝑧)‘(((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)‘( 1 ‘𝑤)))) |
251 | 225, 249,
250 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑏‘𝑧) ∘ ((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘))‘( 1 ‘𝑤)) = ((𝑏‘𝑧)‘(((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)‘( 1 ‘𝑤)))) |
252 | | fvco3 6314 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑏‘𝑤):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑤)⟶((1st ‘ℎ)‘𝑤) ∧ ( 1 ‘𝑤) ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑤)) → ((((𝑤(2nd ‘ℎ)𝑧)‘𝑘) ∘ (𝑏‘𝑤))‘( 1 ‘𝑤)) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)‘((𝑏‘𝑤)‘( 1 ‘𝑤)))) |
253 | 236, 248,
252 | syl2anc 694 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((((𝑤(2nd ‘ℎ)𝑧)‘𝑘) ∘ (𝑏‘𝑤))‘( 1 ‘𝑤)) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)‘((𝑏‘𝑤)‘( 1 ‘𝑤)))) |
254 | 253 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((𝑤(2nd ‘ℎ)𝑧)‘𝑘) ∘ (𝑏‘𝑤))‘( 1 ‘𝑤)) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)‘((𝑏‘𝑤)‘( 1 ‘𝑤)))) |
255 | 245, 251,
254 | 3eqtr3d 2693 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏‘𝑧)‘(((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)‘( 1 ‘𝑤))) = (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)‘((𝑏‘𝑤)‘( 1 ‘𝑤)))) |
256 | | eqid 2651 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(comp‘𝐶) =
(comp‘𝐶) |
257 | 246 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ( 1 ‘𝑤) ∈ (𝑤(Hom ‘𝐶)𝑤)) |
258 | 10, 6, 167, 172, 110, 172, 256, 174, 175, 257 | yon12 16952 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)‘( 1 ‘𝑤)) = (( 1 ‘𝑤)(〈𝑧, 𝑤〉(comp‘𝐶)𝑤)𝑘)) |
259 | 6, 110, 11, 167, 174, 256, 172, 175 | catlid 16391 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (( 1 ‘𝑤)(〈𝑧, 𝑤〉(comp‘𝐶)𝑤)𝑘) = 𝑘) |
260 | 258, 259 | eqtrd 2685 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)‘( 1 ‘𝑤)) = 𝑘) |
261 | 260 | fveq2d 6233 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏‘𝑧)‘(((𝑤(2nd ‘((1st
‘𝑌)‘𝑤))𝑧)‘𝑘)‘( 1 ‘𝑤))) = ((𝑏‘𝑧)‘𝑘)) |
262 | 255, 261 | eqtr3d 2687 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘ℎ)𝑧)‘𝑘)‘((𝑏‘𝑤)‘( 1 ‘𝑤))) = ((𝑏‘𝑧)‘𝑘)) |
263 | 176, 187,
262 | 3eqtrd 2689 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧)‘𝑘) = ((𝑏‘𝑧)‘𝑘)) |
264 | 166, 263 | syldan 486 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) ∧ 𝑘 ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧)) → ((((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧)‘𝑘) = ((𝑏‘𝑧)‘𝑘)) |
265 | 264 | mpteq2dva 4777 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (𝑘 ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) ↦ ((((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧)‘𝑘)) = (𝑘 ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) ↦ ((𝑏‘𝑧)‘𝑘))) |
266 | 155 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏)) ∈ (〈(1st
‘((1st ‘𝑌)‘𝑤)), (2nd ‘((1st
‘𝑌)‘𝑤))〉(𝑂 Nat 𝑆)〈(1st ‘ℎ), (2nd ‘ℎ)〉)) |
267 | 144, 266,
7, 220, 163 | natcl 16660 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧) ∈ (((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st ‘ℎ)‘𝑧))) |
268 | 12, 195, 220, 212, 218 | elsetchom 16778 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → ((((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧) ∈ (((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st ‘ℎ)‘𝑧)) ↔ (((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧)⟶((1st ‘ℎ)‘𝑧))) |
269 | 267, 268 | mpbid 222 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧):((1st ‘((1st
‘𝑌)‘𝑤))‘𝑧)⟶((1st ‘ℎ)‘𝑧)) |
270 | 269 | feqmptd 6288 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧) = (𝑘 ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) ↦ ((((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧)‘𝑘))) |
271 | 229 | feqmptd 6288 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (𝑏‘𝑧) = (𝑘 ∈ ((1st
‘((1st ‘𝑌)‘𝑤))‘𝑧) ↦ ((𝑏‘𝑧)‘𝑘))) |
272 | 265, 270,
271 | 3eqtr4d 2695 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) ∧ 𝑧 ∈ 𝐵) → (((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))‘𝑧) = (𝑏‘𝑧)) |
273 | 156, 160,
272 | eqfnfvd 6354 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) ∧ 𝑏 ∈ (ℎ(1st ‘𝑍)𝑤)) → ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏)) = 𝑏) |
274 | 273 | mpteq2dva 4777 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (𝑏 ∈ (ℎ(1st ‘𝑍)𝑤) ↦ ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))) = (𝑏 ∈ (ℎ(1st ‘𝑍)𝑤) ↦ 𝑏)) |
275 | | mptresid 5491 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ (ℎ(1st ‘𝑍)𝑤) ↦ 𝑏) = ( I ↾ (ℎ(1st ‘𝑍)𝑤)) |
276 | 274, 275 | syl6eq 2701 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (𝑏 ∈ (ℎ(1st ‘𝑍)𝑤) ↦ ((ℎ𝑁𝑤)‘((ℎ𝑀𝑤)‘𝑏))) = ( I ↾ (ℎ(1st ‘𝑍)𝑤))) |
277 | 143, 276 | eqtrd 2685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑁𝑤) ∘ (ℎ𝑀𝑤)) = ( I ↾ (ℎ(1st ‘𝑍)𝑤))) |
278 | | fcof1o 6591 |
. . . . . . . . 9
⊢ ((((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)⟶(ℎ(1st ‘𝐸)𝑤) ∧ (ℎ𝑁𝑤):(ℎ(1st ‘𝐸)𝑤)⟶(ℎ(1st ‘𝑍)𝑤)) ∧ (((ℎ𝑀𝑤) ∘ (ℎ𝑁𝑤)) = ( I ↾ (ℎ(1st ‘𝐸)𝑤)) ∧ ((ℎ𝑁𝑤) ∘ (ℎ𝑀𝑤)) = ( I ↾ (ℎ(1st ‘𝑍)𝑤)))) → ((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)–1-1-onto→(ℎ(1st ‘𝐸)𝑤) ∧ ◡(ℎ𝑀𝑤) = (ℎ𝑁𝑤))) |
279 | 35, 86, 141, 277, 278 | syl22anc 1367 |
. . . . . . . 8
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)–1-1-onto→(ℎ(1st ‘𝐸)𝑤) ∧ ◡(ℎ𝑀𝑤) = (ℎ𝑁𝑤))) |
280 | | eqcom 2658 |
. . . . . . . . 9
⊢ (◡(ℎ𝑀𝑤) = (ℎ𝑁𝑤) ↔ (ℎ𝑁𝑤) = ◡(ℎ𝑀𝑤)) |
281 | 280 | anbi2i 730 |
. . . . . . . 8
⊢ (((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)–1-1-onto→(ℎ(1st ‘𝐸)𝑤) ∧ ◡(ℎ𝑀𝑤) = (ℎ𝑁𝑤)) ↔ ((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)–1-1-onto→(ℎ(1st ‘𝐸)𝑤) ∧ (ℎ𝑁𝑤) = ◡(ℎ𝑀𝑤))) |
282 | 279, 281 | sylib 208 |
. . . . . . 7
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)–1-1-onto→(ℎ(1st ‘𝐸)𝑤) ∧ (ℎ𝑁𝑤) = ◡(ℎ𝑀𝑤))) |
283 | | eqid 2651 |
. . . . . . . . . . 11
⊢
(Base‘𝑇) =
(Base‘𝑇) |
284 | | relfunc 16569 |
. . . . . . . . . . . 12
⊢ Rel
((𝑄
×c 𝑂) Func 𝑇) |
285 | | 1st2ndbr 7261 |
. . . . . . . . . . . 12
⊢ ((Rel
((𝑄
×c 𝑂) Func 𝑇) ∧ 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st ‘𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd ‘𝑍)) |
286 | 284, 22, 285 | sylancr 696 |
. . . . . . . . . . 11
⊢ (𝜑 → (1st
‘𝑍)((𝑄 ×c
𝑂) Func 𝑇)(2nd ‘𝑍)) |
287 | 8, 283, 286 | funcf1 16573 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇)) |
288 | 13, 18 | setcbas 16775 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑉 = (Base‘𝑇)) |
289 | 288 | feq3d 6070 |
. . . . . . . . . 10
⊢ (𝜑 → ((1st
‘𝑍):((𝑂 Func 𝑆) × 𝐵)⟶𝑉 ↔ (1st ‘𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))) |
290 | 287, 289 | mpbird 247 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝑍):((𝑂 Func 𝑆) × 𝐵)⟶𝑉) |
291 | 290 | fovrnda 6847 |
. . . . . . . 8
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ(1st ‘𝑍)𝑤) ∈ 𝑉) |
292 | | 1st2ndbr 7261 |
. . . . . . . . . . . 12
⊢ ((Rel
((𝑄
×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st ‘𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd ‘𝐸)) |
293 | 284, 23, 292 | sylancr 696 |
. . . . . . . . . . 11
⊢ (𝜑 → (1st
‘𝐸)((𝑄 ×c
𝑂) Func 𝑇)(2nd ‘𝐸)) |
294 | 8, 283, 293 | funcf1 16573 |
. . . . . . . . . 10
⊢ (𝜑 → (1st
‘𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇)) |
295 | 288 | feq3d 6070 |
. . . . . . . . . 10
⊢ (𝜑 → ((1st
‘𝐸):((𝑂 Func 𝑆) × 𝐵)⟶𝑉 ↔ (1st ‘𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))) |
296 | 294, 295 | mpbird 247 |
. . . . . . . . 9
⊢ (𝜑 → (1st
‘𝐸):((𝑂 Func 𝑆) × 𝐵)⟶𝑉) |
297 | 296 | fovrnda 6847 |
. . . . . . . 8
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ(1st ‘𝐸)𝑤) ∈ 𝑉) |
298 | 13, 29, 291, 297, 25 | setcinv 16787 |
. . . . . . 7
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → ((ℎ𝑀𝑤)((ℎ(1st ‘𝑍)𝑤)(Inv‘𝑇)(ℎ(1st ‘𝐸)𝑤))(ℎ𝑁𝑤) ↔ ((ℎ𝑀𝑤):(ℎ(1st ‘𝑍)𝑤)–1-1-onto→(ℎ(1st ‘𝐸)𝑤) ∧ (ℎ𝑁𝑤) = ◡(ℎ𝑀𝑤)))) |
299 | 282, 298 | mpbird 247 |
. . . . . 6
⊢ ((𝜑 ∧ (ℎ ∈ (𝑂 Func 𝑆) ∧ 𝑤 ∈ 𝐵)) → (ℎ𝑀𝑤)((ℎ(1st ‘𝑍)𝑤)(Inv‘𝑇)(ℎ(1st ‘𝐸)𝑤))(ℎ𝑁𝑤)) |
300 | 299 | ralrimivva 3000 |
. . . . 5
⊢ (𝜑 → ∀ℎ ∈ (𝑂 Func 𝑆)∀𝑤 ∈ 𝐵 (ℎ𝑀𝑤)((ℎ(1st ‘𝑍)𝑤)(Inv‘𝑇)(ℎ(1st ‘𝐸)𝑤))(ℎ𝑁𝑤)) |
301 | | fveq2 6229 |
. . . . . . . 8
⊢ (𝑧 = 〈ℎ, 𝑤〉 → (𝑀‘𝑧) = (𝑀‘〈ℎ, 𝑤〉)) |
302 | | df-ov 6693 |
. . . . . . . 8
⊢ (ℎ𝑀𝑤) = (𝑀‘〈ℎ, 𝑤〉) |
303 | 301, 302 | syl6eqr 2703 |
. . . . . . 7
⊢ (𝑧 = 〈ℎ, 𝑤〉 → (𝑀‘𝑧) = (ℎ𝑀𝑤)) |
304 | | fveq2 6229 |
. . . . . . . . 9
⊢ (𝑧 = 〈ℎ, 𝑤〉 → ((1st ‘𝑍)‘𝑧) = ((1st ‘𝑍)‘〈ℎ, 𝑤〉)) |
305 | | df-ov 6693 |
. . . . . . . . 9
⊢ (ℎ(1st ‘𝑍)𝑤) = ((1st ‘𝑍)‘〈ℎ, 𝑤〉) |
306 | 304, 305 | syl6eqr 2703 |
. . . . . . . 8
⊢ (𝑧 = 〈ℎ, 𝑤〉 → ((1st ‘𝑍)‘𝑧) = (ℎ(1st ‘𝑍)𝑤)) |
307 | | fveq2 6229 |
. . . . . . . . 9
⊢ (𝑧 = 〈ℎ, 𝑤〉 → ((1st ‘𝐸)‘𝑧) = ((1st ‘𝐸)‘〈ℎ, 𝑤〉)) |
308 | | df-ov 6693 |
. . . . . . . . 9
⊢ (ℎ(1st ‘𝐸)𝑤) = ((1st ‘𝐸)‘〈ℎ, 𝑤〉) |
309 | 307, 308 | syl6eqr 2703 |
. . . . . . . 8
⊢ (𝑧 = 〈ℎ, 𝑤〉 → ((1st ‘𝐸)‘𝑧) = (ℎ(1st ‘𝐸)𝑤)) |
310 | 306, 309 | oveq12d 6708 |
. . . . . . 7
⊢ (𝑧 = 〈ℎ, 𝑤〉 → (((1st ‘𝑍)‘𝑧)(Inv‘𝑇)((1st ‘𝐸)‘𝑧)) = ((ℎ(1st ‘𝑍)𝑤)(Inv‘𝑇)(ℎ(1st ‘𝐸)𝑤))) |
311 | | fveq2 6229 |
. . . . . . . 8
⊢ (𝑧 = 〈ℎ, 𝑤〉 → (𝑁‘𝑧) = (𝑁‘〈ℎ, 𝑤〉)) |
312 | | df-ov 6693 |
. . . . . . . 8
⊢ (ℎ𝑁𝑤) = (𝑁‘〈ℎ, 𝑤〉) |
313 | 311, 312 | syl6eqr 2703 |
. . . . . . 7
⊢ (𝑧 = 〈ℎ, 𝑤〉 → (𝑁‘𝑧) = (ℎ𝑁𝑤)) |
314 | 303, 310,
313 | breq123d 4699 |
. . . . . 6
⊢ (𝑧 = 〈ℎ, 𝑤〉 → ((𝑀‘𝑧)(((1st ‘𝑍)‘𝑧)(Inv‘𝑇)((1st ‘𝐸)‘𝑧))(𝑁‘𝑧) ↔ (ℎ𝑀𝑤)((ℎ(1st ‘𝑍)𝑤)(Inv‘𝑇)(ℎ(1st ‘𝐸)𝑤))(ℎ𝑁𝑤))) |
315 | 314 | ralxp 5296 |
. . . . 5
⊢
(∀𝑧 ∈
((𝑂 Func 𝑆) × 𝐵)(𝑀‘𝑧)(((1st ‘𝑍)‘𝑧)(Inv‘𝑇)((1st ‘𝐸)‘𝑧))(𝑁‘𝑧) ↔ ∀ℎ ∈ (𝑂 Func 𝑆)∀𝑤 ∈ 𝐵 (ℎ𝑀𝑤)((ℎ(1st ‘𝑍)𝑤)(Inv‘𝑇)(ℎ(1st ‘𝐸)𝑤))(ℎ𝑁𝑤)) |
316 | 300, 315 | sylibr 224 |
. . . 4
⊢ (𝜑 → ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀‘𝑧)(((1st ‘𝑍)‘𝑧)(Inv‘𝑇)((1st ‘𝐸)‘𝑧))(𝑁‘𝑧)) |
317 | 316 | r19.21bi 2961 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)) → (𝑀‘𝑧)(((1st ‘𝑍)‘𝑧)(Inv‘𝑇)((1st ‘𝐸)‘𝑧))(𝑁‘𝑧)) |
318 | 1, 8, 9, 22, 23, 24, 25, 27, 317 | invfuc 16681 |
. 2
⊢ (𝜑 → 𝑀(𝑍𝐼𝐸)(𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ↦ (𝑁‘𝑧))) |
319 | | fvex 6239 |
. . . . 5
⊢
((1st ‘𝑓)‘𝑥) ∈ V |
320 | 319 | mptex 6527 |
. . . 4
⊢ (𝑢 ∈ ((1st
‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢)))) ∈ V |
321 | 42, 320 | fnmpt2i 7284 |
. . 3
⊢ 𝑁 Fn ((𝑂 Func 𝑆) × 𝐵) |
322 | | dffn5 6280 |
. . 3
⊢ (𝑁 Fn ((𝑂 Func 𝑆) × 𝐵) ↔ 𝑁 = (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ↦ (𝑁‘𝑧))) |
323 | 321, 322 | mpbi 220 |
. 2
⊢ 𝑁 = (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ↦ (𝑁‘𝑧)) |
324 | 318, 323 | syl6breqr 4727 |
1
⊢ (𝜑 → 𝑀(𝑍𝐼𝐸)𝑁) |