![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > yoneda | Structured version Visualization version GIF version |
Description: The Yoneda Lemma. There is a natural isomorphism between the functors 𝑍 and 𝐸, where 𝑍(𝐹, 𝑋) is the natural transformations from Yon(𝑋) = Hom ( − , 𝑋) to 𝐹, and 𝐸(𝐹, 𝑋) = 𝐹(𝑋) is the evaluation functor. Here we need two universes to state the claim: the smaller universe 𝑈 is used for forming the functor category 𝑄 = 𝐶 op → SetCat(𝑈), which itself does not (necessarily) live in 𝑈 but instead is an element of the larger universe 𝑉. (If 𝑈 is a Grothendieck universe, then it will be closed under this "presheaf" operation, and so we can set 𝑈 = 𝑉 in this case.) (Contributed by Mario Carneiro, 29-Jan-2017.) |
Ref | Expression |
---|---|
yoneda.y | ⊢ 𝑌 = (Yon‘𝐶) |
yoneda.b | ⊢ 𝐵 = (Base‘𝐶) |
yoneda.1 | ⊢ 1 = (Id‘𝐶) |
yoneda.o | ⊢ 𝑂 = (oppCat‘𝐶) |
yoneda.s | ⊢ 𝑆 = (SetCat‘𝑈) |
yoneda.t | ⊢ 𝑇 = (SetCat‘𝑉) |
yoneda.q | ⊢ 𝑄 = (𝑂 FuncCat 𝑆) |
yoneda.h | ⊢ 𝐻 = (HomF‘𝑄) |
yoneda.r | ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) |
yoneda.e | ⊢ 𝐸 = (𝑂 evalF 𝑆) |
yoneda.z | ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) |
yoneda.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
yoneda.w | ⊢ (𝜑 → 𝑉 ∈ 𝑊) |
yoneda.u | ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) |
yoneda.v | ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) |
yoneda.m | ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) |
yoneda.i | ⊢ 𝐼 = (Iso‘𝑅) |
Ref | Expression |
---|---|
yoneda | ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐼𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | yoneda.r | . . 3 ⊢ 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇) | |
2 | 1 | fucbas 16826 | . 2 ⊢ ((𝑄 ×c 𝑂) Func 𝑇) = (Base‘𝑅) |
3 | eqid 2770 | . 2 ⊢ (Inv‘𝑅) = (Inv‘𝑅) | |
4 | yoneda.y | . . . . . . 7 ⊢ 𝑌 = (Yon‘𝐶) | |
5 | yoneda.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝐶) | |
6 | yoneda.1 | . . . . . . 7 ⊢ 1 = (Id‘𝐶) | |
7 | yoneda.o | . . . . . . 7 ⊢ 𝑂 = (oppCat‘𝐶) | |
8 | yoneda.s | . . . . . . 7 ⊢ 𝑆 = (SetCat‘𝑈) | |
9 | yoneda.t | . . . . . . 7 ⊢ 𝑇 = (SetCat‘𝑉) | |
10 | yoneda.q | . . . . . . 7 ⊢ 𝑄 = (𝑂 FuncCat 𝑆) | |
11 | yoneda.h | . . . . . . 7 ⊢ 𝐻 = (HomF‘𝑄) | |
12 | yoneda.e | . . . . . . 7 ⊢ 𝐸 = (𝑂 evalF 𝑆) | |
13 | yoneda.z | . . . . . . 7 ⊢ 𝑍 = (𝐻 ∘func ((〈(1st ‘𝑌), tpos (2nd ‘𝑌)〉 ∘func (𝑄 2ndF 𝑂)) 〈,〉F (𝑄 1stF 𝑂))) | |
14 | yoneda.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
15 | yoneda.w | . . . . . . 7 ⊢ (𝜑 → 𝑉 ∈ 𝑊) | |
16 | yoneda.u | . . . . . . 7 ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) | |
17 | yoneda.v | . . . . . . 7 ⊢ (𝜑 → (ran (Homf ‘𝑄) ∪ 𝑈) ⊆ 𝑉) | |
18 | 4, 5, 6, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17 | yonedalem1 17119 | . . . . . 6 ⊢ (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))) |
19 | 18 | simpld 476 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) |
20 | funcrcl 16729 | . . . . 5 ⊢ (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) → ((𝑄 ×c 𝑂) ∈ Cat ∧ 𝑇 ∈ Cat)) | |
21 | 19, 20 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝑄 ×c 𝑂) ∈ Cat ∧ 𝑇 ∈ Cat)) |
22 | 21 | simpld 476 | . . 3 ⊢ (𝜑 → (𝑄 ×c 𝑂) ∈ Cat) |
23 | 21 | simprd 477 | . . 3 ⊢ (𝜑 → 𝑇 ∈ Cat) |
24 | 1, 22, 23 | fuccat 16836 | . 2 ⊢ (𝜑 → 𝑅 ∈ Cat) |
25 | 18 | simprd 477 | . 2 ⊢ (𝜑 → 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) |
26 | yoneda.i | . 2 ⊢ 𝐼 = (Iso‘𝑅) | |
27 | yoneda.m | . . 3 ⊢ 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑎 ∈ (((1st ‘𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎‘𝑥)‘( 1 ‘𝑥)))) | |
28 | eqid 2770 | . . 3 ⊢ (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢))))) | |
29 | 4, 5, 6, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 27, 3, 28 | yonedainv 17128 | . 2 ⊢ (𝜑 → 𝑀(𝑍(Inv‘𝑅)𝐸)(𝑓 ∈ (𝑂 Func 𝑆), 𝑥 ∈ 𝐵 ↦ (𝑢 ∈ ((1st ‘𝑓)‘𝑥) ↦ (𝑦 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd ‘𝑓)𝑦)‘𝑔)‘𝑢)))))) |
30 | 2, 3, 24, 19, 25, 26, 29 | inviso1 16632 | 1 ⊢ (𝜑 → 𝑀 ∈ (𝑍𝐼𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∪ cun 3719 ⊆ wss 3721 〈cop 4320 ↦ cmpt 4861 ran crn 5250 ‘cfv 6031 (class class class)co 6792 ↦ cmpt2 6794 1st c1st 7312 2nd c2nd 7313 tpos ctpos 7502 Basecbs 16063 Hom chom 16159 Catccat 16531 Idccid 16532 Homf chomf 16533 oppCatcoppc 16577 Invcinv 16611 Isociso 16612 Func cfunc 16720 ∘func ccofu 16722 Nat cnat 16807 FuncCat cfuc 16808 SetCatcsetc 16931 ×c cxpc 17015 1stF c1stf 17016 2ndF c2ndf 17017 〈,〉F cprf 17018 evalF cevlf 17056 HomFchof 17095 Yoncyon 17096 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-tpos 7503 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-fz 12533 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-hom 16173 df-cco 16174 df-cat 16535 df-cid 16536 df-homf 16537 df-comf 16538 df-oppc 16578 df-sect 16613 df-inv 16614 df-iso 16615 df-ssc 16676 df-resc 16677 df-subc 16678 df-func 16724 df-cofu 16726 df-nat 16809 df-fuc 16810 df-setc 16932 df-xpc 17019 df-1stf 17020 df-2ndf 17021 df-prf 17022 df-evlf 17060 df-curf 17061 df-hof 17097 df-yon 17098 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |