Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsxmet Structured version   Visualization version   GIF version

Theorem xrsxmet 22659
 Description: The metric on the extended reals is a proper extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
xrsxmet.1 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsxmet 𝐷 ∈ (∞Met‘ℝ*)

Proof of Theorem xrsxmet
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrex 11867 . . . 4 * ∈ V
21a1i 11 . . 3 (⊤ → ℝ* ∈ V)
3 id 22 . . . . . . . 8 (𝑦 ∈ ℝ*𝑦 ∈ ℝ*)
4 xnegcl 12082 . . . . . . . 8 (𝑥 ∈ ℝ* → -𝑒𝑥 ∈ ℝ*)
5 xaddcl 12108 . . . . . . . 8 ((𝑦 ∈ ℝ* ∧ -𝑒𝑥 ∈ ℝ*) → (𝑦 +𝑒 -𝑒𝑥) ∈ ℝ*)
63, 4, 5syl2anr 494 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 +𝑒 -𝑒𝑥) ∈ ℝ*)
7 xnegcl 12082 . . . . . . . 8 (𝑦 ∈ ℝ* → -𝑒𝑦 ∈ ℝ*)
8 xaddcl 12108 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ -𝑒𝑦 ∈ ℝ*) → (𝑥 +𝑒 -𝑒𝑦) ∈ ℝ*)
97, 8sylan2 490 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 -𝑒𝑦) ∈ ℝ*)
106, 9ifcld 4164 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*)
1110rgen2a 3006 . . . . 5 𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*
12 xrsxmet.1 . . . . . . 7 𝐷 = (dist‘ℝ*𝑠)
1312xrsds 19837 . . . . . 6 𝐷 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
1413fmpt2 7282 . . . . 5 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*𝐷:(ℝ* × ℝ*)⟶ℝ*)
1511, 14mpbi 220 . . . 4 𝐷:(ℝ* × ℝ*)⟶ℝ*
1615a1i 11 . . 3 (⊤ → 𝐷:(ℝ* × ℝ*)⟶ℝ*)
17 breq2 4689 . . . . . 6 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (0 ≤ (𝑦 +𝑒 -𝑒𝑥) ↔ 0 ≤ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))))
18 breq2 4689 . . . . . 6 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (0 ≤ (𝑥 +𝑒 -𝑒𝑦) ↔ 0 ≤ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))))
19 xsubge0 12129 . . . . . . . 8 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (0 ≤ (𝑦 +𝑒 -𝑒𝑥) ↔ 𝑥𝑦))
2019ancoms 468 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (0 ≤ (𝑦 +𝑒 -𝑒𝑥) ↔ 𝑥𝑦))
2120biimpar 501 . . . . . 6 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → 0 ≤ (𝑦 +𝑒 -𝑒𝑥))
22 xrletri 12022 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦𝑦𝑥))
2322orcanai 972 . . . . . . 7 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥𝑦) → 𝑦𝑥)
24 xsubge0 12129 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (0 ≤ (𝑥 +𝑒 -𝑒𝑦) ↔ 𝑦𝑥))
2524biimpar 501 . . . . . . 7 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑦𝑥) → 0 ≤ (𝑥 +𝑒 -𝑒𝑦))
2623, 25syldan 486 . . . . . 6 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥𝑦) → 0 ≤ (𝑥 +𝑒 -𝑒𝑦))
2717, 18, 21, 26ifbothda 4156 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 0 ≤ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
2812xrsdsval 19838 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝐷𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
2927, 28breqtrrd 4713 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 0 ≤ (𝑥𝐷𝑦))
3029adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 0 ≤ (𝑥𝐷𝑦))
3129biantrud 527 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
3228, 10eqeltrd 2730 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝐷𝑦) ∈ ℝ*)
33 0xr 10124 . . . . . 6 0 ∈ ℝ*
34 xrletri3 12023 . . . . . 6 (((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
3532, 33, 34sylancl 695 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
36 simpr 476 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
37 simplr 807 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) = 0)
38 0re 10078 . . . . . . . . . . . . 13 0 ∈ ℝ
3937, 38syl6eqel 2738 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) ∈ ℝ)
4012xrsdsreclb 19841 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑥𝑦) → ((𝑥𝐷𝑦) ∈ ℝ ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
41403expa 1284 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → ((𝑥𝐷𝑦) ∈ ℝ ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
4241adantlr 751 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → ((𝑥𝐷𝑦) ∈ ℝ ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
4339, 42mpbid 222 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))
4443simpld 474 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑥 ∈ ℝ)
4544recnd 10106 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑥 ∈ ℂ)
4643simprd 478 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑦 ∈ ℝ)
4746recnd 10106 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑦 ∈ ℂ)
48 rexsub 12102 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 +𝑒 -𝑒𝑦) = (𝑥𝑦))
4943, 48syl 17 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥 +𝑒 -𝑒𝑦) = (𝑥𝑦))
5028eqeq1d 2653 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0))
5150biimpa 500 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0)
5251adantr 480 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0)
53 xneg11 12084 . . . . . . . . . . . . . . 15 (((𝑦 +𝑒 -𝑒𝑥) ∈ ℝ* ∧ 0 ∈ ℝ*) → (-𝑒(𝑦 +𝑒 -𝑒𝑥) = -𝑒0 ↔ (𝑦 +𝑒 -𝑒𝑥) = 0))
546, 33, 53sylancl 695 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒(𝑦 +𝑒 -𝑒𝑥) = -𝑒0 ↔ (𝑦 +𝑒 -𝑒𝑥) = 0))
55 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
564adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒𝑥 ∈ ℝ*)
57 xnegdi 12116 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ* ∧ -𝑒𝑥 ∈ ℝ*) → -𝑒(𝑦 +𝑒 -𝑒𝑥) = (-𝑒𝑦 +𝑒 -𝑒-𝑒𝑥))
5855, 56, 57syl2anc 694 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒(𝑦 +𝑒 -𝑒𝑥) = (-𝑒𝑦 +𝑒 -𝑒-𝑒𝑥))
59 xnegneg 12083 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* → -𝑒-𝑒𝑥 = 𝑥)
6059adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒-𝑒𝑥 = 𝑥)
6160oveq2d 6706 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑦 +𝑒 -𝑒-𝑒𝑥) = (-𝑒𝑦 +𝑒 𝑥))
627adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒𝑦 ∈ ℝ*)
63 simpl 472 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
64 xaddcom 12109 . . . . . . . . . . . . . . . . 17 ((-𝑒𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (-𝑒𝑦 +𝑒 𝑥) = (𝑥 +𝑒 -𝑒𝑦))
6562, 63, 64syl2anc 694 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑦 +𝑒 𝑥) = (𝑥 +𝑒 -𝑒𝑦))
6658, 61, 653eqtrd 2689 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒(𝑦 +𝑒 -𝑒𝑥) = (𝑥 +𝑒 -𝑒𝑦))
67 xneg0 12081 . . . . . . . . . . . . . . . 16 -𝑒0 = 0
6867a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒0 = 0)
6966, 68eqeq12d 2666 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒(𝑦 +𝑒 -𝑒𝑥) = -𝑒0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7054, 69bitr3d 270 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7170ad2antrr 762 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → ((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
72 biidd 252 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → ((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
73 eqeq1 2655 . . . . . . . . . . . . . 14 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → ((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0))
7473bibi1d 332 . . . . . . . . . . . . 13 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0) ↔ (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0)))
75 eqeq1 2655 . . . . . . . . . . . . . 14 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → ((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0))
7675bibi1d 332 . . . . . . . . . . . . 13 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0) ↔ (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0)))
7774, 76ifboth 4157 . . . . . . . . . . . 12 ((((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0) ∧ ((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0)) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7871, 72, 77syl2anc 694 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7952, 78mpbid 222 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥 +𝑒 -𝑒𝑦) = 0)
8049, 79eqtr3d 2687 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥𝑦) = 0)
8145, 47, 80subeq0d 10438 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑥 = 𝑦)
8236, 81pm2.61dane 2910 . . . . . . 7 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) → 𝑥 = 𝑦)
8382ex 449 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 → 𝑥 = 𝑦))
8412xrsdsval 19838 . . . . . . . . . 10 ((𝑦 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦𝐷𝑦) = if(𝑦𝑦, (𝑦 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑦)))
8584anidms 678 . . . . . . . . 9 (𝑦 ∈ ℝ* → (𝑦𝐷𝑦) = if(𝑦𝑦, (𝑦 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑦)))
86 xrleid 12021 . . . . . . . . . 10 (𝑦 ∈ ℝ*𝑦𝑦)
8786iftrued 4127 . . . . . . . . 9 (𝑦 ∈ ℝ* → if(𝑦𝑦, (𝑦 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑦)) = (𝑦 +𝑒 -𝑒𝑦))
88 xnegid 12107 . . . . . . . . 9 (𝑦 ∈ ℝ* → (𝑦 +𝑒 -𝑒𝑦) = 0)
8985, 87, 883eqtrd 2689 . . . . . . . 8 (𝑦 ∈ ℝ* → (𝑦𝐷𝑦) = 0)
9089adantl 481 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦𝐷𝑦) = 0)
91 oveq1 6697 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐷𝑦) = (𝑦𝐷𝑦))
9291eqeq1d 2653 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐷𝑦) = 0 ↔ (𝑦𝐷𝑦) = 0))
9390, 92syl5ibrcom 237 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 = 𝑦 → (𝑥𝐷𝑦) = 0))
9483, 93impbid 202 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
9531, 35, 943bitr2d 296 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
9695adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
97 simplrr 818 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) ∈ ℝ)
9897leidd 10632 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) ≤ (𝑧𝐷𝑦))
99 simpr 476 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → 𝑧 = 𝑥)
10099oveq1d 6705 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) = (𝑥𝐷𝑦))
10199oveq1d 6705 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑥) = (𝑥𝐷𝑥))
102 simpll1 1120 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → 𝑥 ∈ ℝ*)
103 oveq12 6699 . . . . . . . . . . . . 13 ((𝑦 = 𝑥𝑦 = 𝑥) → (𝑦𝐷𝑦) = (𝑥𝐷𝑥))
104103anidms 678 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐷𝑦) = (𝑥𝐷𝑥))
105104eqeq1d 2653 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑦𝐷𝑦) = 0 ↔ (𝑥𝐷𝑥) = 0))
106105, 89vtoclga 3303 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (𝑥𝐷𝑥) = 0)
107102, 106syl 17 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑥𝐷𝑥) = 0)
108101, 107eqtrd 2685 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑥) = 0)
109108oveq1d 6705 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = (0 + (𝑧𝐷𝑦)))
11097recnd 10106 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) ∈ ℂ)
111110addid2d 10275 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (0 + (𝑧𝐷𝑦)) = (𝑧𝐷𝑦))
112109, 111eqtr2d 2686 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
11398, 100, 1123brtr3d 4716 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
114 simpr 476 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → 𝑧 = 𝑦)
115114oveq1d 6705 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑥) = (𝑦𝐷𝑥))
116 simplrl 817 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑥) ∈ ℝ)
117115, 116eqeltrrd 2731 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑥) ∈ ℝ)
118117leidd 10632 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑥) ≤ (𝑦𝐷𝑥))
119 simpll1 1120 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → 𝑥 ∈ ℝ*)
120 simpll2 1121 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → 𝑦 ∈ ℝ*)
121 oveq2 6698 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑦𝐷𝑥) = (𝑦𝐷𝑦))
12291, 121eqtr4d 2688 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
123122adantl 481 . . . . . . . 8 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
124 eqeq2 2662 . . . . . . . . . 10 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑥 +𝑒 -𝑒𝑦) ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥))))
125 eqeq2 2662 . . . . . . . . . 10 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑦 +𝑒 -𝑒𝑥) ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥))))
126 xrleloe 12015 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
127126adantr 480 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
128 simpr 476 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → 𝑥𝑦)
129128neneqd 2828 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → ¬ 𝑥 = 𝑦)
130 biorf 419 . . . . . . . . . . . . . . . 16 𝑥 = 𝑦 → (𝑥 < 𝑦 ↔ (𝑥 = 𝑦𝑥 < 𝑦)))
131 orcom 401 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥 < 𝑦𝑥 = 𝑦))
132130, 131syl6bb 276 . . . . . . . . . . . . . . 15 𝑥 = 𝑦 → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
133129, 132syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
134 xrltnle 10143 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
135134adantr 480 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
136127, 133, 1353bitr2d 296 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝑦 ↔ ¬ 𝑦𝑥))
137136con2bid 343 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
138137biimpa 500 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ 𝑦𝑥) → ¬ 𝑥𝑦)
139138iffalsed 4130 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ 𝑦𝑥) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑥 +𝑒 -𝑒𝑦))
140136biimpar 501 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ ¬ 𝑦𝑥) → 𝑥𝑦)
141140iftrued 4127 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ ¬ 𝑦𝑥) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑦 +𝑒 -𝑒𝑥))
142124, 125, 139, 141ifbothda 4156 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
14328adantr 480 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
14412xrsdsval 19838 . . . . . . . . . . 11 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦𝐷𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
145144ancoms 468 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦𝐷𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
146145adantr 480 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑦𝐷𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
147142, 143, 1463eqtr4d 2695 . . . . . . . 8 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
148123, 147pm2.61dane 2910 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
149119, 120, 148syl2anc 694 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
150114oveq1d 6705 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑦) = (𝑦𝐷𝑦))
151120, 89syl 17 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑦) = 0)
152150, 151eqtrd 2685 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑦) = 0)
153115, 152oveq12d 6708 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((𝑦𝐷𝑥) + 0))
154117recnd 10106 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑥) ∈ ℂ)
155154addid1d 10274 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → ((𝑦𝐷𝑥) + 0) = (𝑦𝐷𝑥))
156153, 155eqtrd 2685 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = (𝑦𝐷𝑥))
157118, 149, 1563brtr4d 4717 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
158 simplrl 817 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑥) ∈ ℝ)
159 simpll3 1122 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧 ∈ ℝ*)
160 simpll1 1120 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑥 ∈ ℝ*)
161 simprl 809 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧𝑥)
16212xrsdsreclb 19841 . . . . . . . . . . 11 ((𝑧 ∈ ℝ*𝑥 ∈ ℝ*𝑧𝑥) → ((𝑧𝐷𝑥) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
163159, 160, 161, 162syl3anc 1366 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → ((𝑧𝐷𝑥) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
164158, 163mpbid 222 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ))
165164simprd 478 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑥 ∈ ℝ)
166165recnd 10106 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑥 ∈ ℂ)
167 simplrr 818 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑦) ∈ ℝ)
168 simpll2 1121 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑦 ∈ ℝ*)
169 simprr 811 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧𝑦)
17012xrsdsreclb 19841 . . . . . . . . . . 11 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*𝑧𝑦) → ((𝑧𝐷𝑦) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
171159, 168, 169, 170syl3anc 1366 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → ((𝑧𝐷𝑦) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
172167, 171mpbid 222 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ))
173172simprd 478 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑦 ∈ ℝ)
174173recnd 10106 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑦 ∈ ℂ)
175164simpld 474 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧 ∈ ℝ)
176175recnd 10106 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧 ∈ ℂ)
177166, 174, 176abs3difd 14243 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (abs‘(𝑥𝑦)) ≤ ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝑦))))
17812xrsdsreval 19839 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
179165, 173, 178syl2anc 694 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
18012xrsdsreval 19839 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧𝐷𝑥) = (abs‘(𝑧𝑥)))
181164, 180syl 17 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑥) = (abs‘(𝑧𝑥)))
182176, 166abssubd 14236 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (abs‘(𝑧𝑥)) = (abs‘(𝑥𝑧)))
183181, 182eqtrd 2685 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑥) = (abs‘(𝑥𝑧)))
18412xrsdsreval 19839 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧𝐷𝑦) = (abs‘(𝑧𝑦)))
185172, 184syl 17 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑦) = (abs‘(𝑧𝑦)))
186183, 185oveq12d 6708 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝑦))))
187177, 179, 1863brtr4d 4717 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
188113, 157, 187pm2.61da2ne 2911 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1891883adant1 1099 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1902, 16, 30, 96, 189isxmet2d 22179 . 2 (⊤ → 𝐷 ∈ (∞Met‘ℝ*))
191190trud 1533 1 𝐷 ∈ (∞Met‘ℝ*)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1054   = wceq 1523  ⊤wtru 1524   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  Vcvv 3231  ifcif 4119   class class class wbr 4685   × cxp 5141  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  ℝcr 9973  0cc0 9974   + caddc 9977  ℝ*cxr 10111   < clt 10112   ≤ cle 10113   − cmin 10304  -𝑒cxne 11981   +𝑒 cxad 11982  abscabs 14018  distcds 15997  ℝ*𝑠cxrs 16207  ∞Metcxmt 19779 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-rp 11871  df-xneg 11984  df-xadd 11985  df-icc 12220  df-fz 12365  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-tset 16007  df-ple 16008  df-ds 16011  df-xrs 16209  df-xmet 19787 This theorem is referenced by:  xrsdsre  22660  xrsblre  22661  xrsmopn  22662  metdcnlem  22686  xmetdcn2  22687  xmetdcn  22688  metdscn  22706  metdscn2  22707
 Copyright terms: Public domain W3C validator