![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsupexmnf | Structured version Visualization version GIF version |
Description: Adding minus infinity to a set does not affect the existence of its supremum. (Contributed by NM, 26-Oct-2005.) |
Ref | Expression |
---|---|
xrsupexmnf | ⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3896 | . . . . . 6 ⊢ (𝑦 ∈ (𝐴 ∪ {-∞}) ↔ (𝑦 ∈ 𝐴 ∨ 𝑦 ∈ {-∞})) | |
2 | simpr 479 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) | |
3 | velsn 4337 | . . . . . . . . 9 ⊢ (𝑦 ∈ {-∞} ↔ 𝑦 = -∞) | |
4 | nltmnf 12176 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞) | |
5 | breq2 4808 | . . . . . . . . . . 11 ⊢ (𝑦 = -∞ → (𝑥 < 𝑦 ↔ 𝑥 < -∞)) | |
6 | 5 | notbid 307 | . . . . . . . . . 10 ⊢ (𝑦 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞)) |
7 | 4, 6 | syl5ibrcom 237 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ* → (𝑦 = -∞ → ¬ 𝑥 < 𝑦)) |
8 | 3, 7 | syl5bi 232 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ* → (𝑦 ∈ {-∞} → ¬ 𝑥 < 𝑦)) |
9 | 8 | adantr 472 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ {-∞} → ¬ 𝑥 < 𝑦)) |
10 | 2, 9 | jaod 394 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ* ∧ (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) → ((𝑦 ∈ 𝐴 ∨ 𝑦 ∈ {-∞}) → ¬ 𝑥 < 𝑦)) |
11 | 1, 10 | syl5bi 232 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ (𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ (𝐴 ∪ {-∞}) → ¬ 𝑥 < 𝑦)) |
12 | 11 | ex 449 | . . . 4 ⊢ (𝑥 ∈ ℝ* → ((𝑦 ∈ 𝐴 → ¬ 𝑥 < 𝑦) → (𝑦 ∈ (𝐴 ∪ {-∞}) → ¬ 𝑥 < 𝑦))) |
13 | 12 | ralimdv2 3099 | . . 3 ⊢ (𝑥 ∈ ℝ* → (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 → ∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦)) |
14 | elun1 3923 | . . . . . . . 8 ⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ (𝐴 ∪ {-∞})) | |
15 | 14 | anim1i 593 | . . . . . . 7 ⊢ ((𝑧 ∈ 𝐴 ∧ 𝑦 < 𝑧) → (𝑧 ∈ (𝐴 ∪ {-∞}) ∧ 𝑦 < 𝑧)) |
16 | 15 | reximi2 3148 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐴 𝑦 < 𝑧 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧) |
17 | 16 | imim2i 16 | . . . . 5 ⊢ ((𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) → (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)) |
18 | 17 | ralimi 3090 | . . . 4 ⊢ (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)) |
19 | 18 | a1i 11 | . . 3 ⊢ (𝑥 ∈ ℝ* → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))) |
20 | 13, 19 | anim12d 587 | . 2 ⊢ (𝑥 ∈ ℝ* → ((∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)))) |
21 | 20 | reximia 3147 | 1 ⊢ (∃𝑥 ∈ ℝ* (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 ∪ cun 3713 {csn 4321 class class class wbr 4804 -∞cmnf 10284 ℝ*cxr 10285 < clt 10286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 |
This theorem is referenced by: xrsupss 12352 |
Copyright terms: Public domain | W3C validator |