![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsmcmn | Structured version Visualization version GIF version |
Description: The multiplicative group of the extended reals forms a commutative monoid (even though the additive group is not, see xrsmgmdifsgrp 19998.) (Contributed by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
xrsmcmn | ⊢ (mulGrp‘ℝ*𝑠) ∈ CMnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . . . . 5 ⊢ (mulGrp‘ℝ*𝑠) = (mulGrp‘ℝ*𝑠) | |
2 | xrsbas 19977 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
3 | 1, 2 | mgpbas 18703 | . . . 4 ⊢ ℝ* = (Base‘(mulGrp‘ℝ*𝑠)) |
4 | 3 | a1i 11 | . . 3 ⊢ (⊤ → ℝ* = (Base‘(mulGrp‘ℝ*𝑠))) |
5 | xrsmul 19979 | . . . . 5 ⊢ ·e = (.r‘ℝ*𝑠) | |
6 | 1, 5 | mgpplusg 18701 | . . . 4 ⊢ ·e = (+g‘(mulGrp‘ℝ*𝑠)) |
7 | 6 | a1i 11 | . . 3 ⊢ (⊤ → ·e = (+g‘(mulGrp‘ℝ*𝑠))) |
8 | xmulcl 12308 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) ∈ ℝ*) | |
9 | 8 | 3adant1 1124 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) ∈ ℝ*) |
10 | xmulass 12322 | . . . . 5 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧))) | |
11 | 10 | adantl 467 | . . . 4 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*)) → ((𝑥 ·e 𝑦) ·e 𝑧) = (𝑥 ·e (𝑦 ·e 𝑧))) |
12 | 1re 10241 | . . . . 5 ⊢ 1 ∈ ℝ | |
13 | rexr 10287 | . . . . 5 ⊢ (1 ∈ ℝ → 1 ∈ ℝ*) | |
14 | 12, 13 | mp1i 13 | . . . 4 ⊢ (⊤ → 1 ∈ ℝ*) |
15 | xmulid2 12315 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (1 ·e 𝑥) = 𝑥) | |
16 | 15 | adantl 467 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ*) → (1 ·e 𝑥) = 𝑥) |
17 | xmulid1 12314 | . . . . 5 ⊢ (𝑥 ∈ ℝ* → (𝑥 ·e 1) = 𝑥) | |
18 | 17 | adantl 467 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ*) → (𝑥 ·e 1) = 𝑥) |
19 | 4, 7, 9, 11, 14, 16, 18 | ismndd 17521 | . . 3 ⊢ (⊤ → (mulGrp‘ℝ*𝑠) ∈ Mnd) |
20 | xmulcom 12301 | . . . 4 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) = (𝑦 ·e 𝑥)) | |
21 | 20 | 3adant1 1124 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 ·e 𝑦) = (𝑦 ·e 𝑥)) |
22 | 4, 7, 19, 21 | iscmnd 18412 | . 2 ⊢ (⊤ → (mulGrp‘ℝ*𝑠) ∈ CMnd) |
23 | 22 | trud 1641 | 1 ⊢ (mulGrp‘ℝ*𝑠) ∈ CMnd |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1071 = wceq 1631 ⊤wtru 1632 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 ℝcr 10137 1c1 10139 ℝ*cxr 10275 ·e cxmu 12150 Basecbs 16064 +gcplusg 16149 ℝ*𝑠cxrs 16368 CMndccmn 18400 mulGrpcmgp 18697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-xneg 12151 df-xmul 12153 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-plusg 16162 df-mulr 16163 df-tset 16168 df-ple 16169 df-ds 16172 df-xrs 16370 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-cmn 18402 df-mgp 18698 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |