![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrsdsval | Structured version Visualization version GIF version |
Description: The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xrsds.d | ⊢ 𝐷 = (dist‘ℝ*𝑠) |
Ref | Expression |
---|---|
xrsdsval | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq12 4791 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ≤ 𝑦 ↔ 𝐴 ≤ 𝐵)) | |
2 | id 22 | . . . 4 ⊢ (𝑦 = 𝐵 → 𝑦 = 𝐵) | |
3 | xnegeq 12243 | . . . 4 ⊢ (𝑥 = 𝐴 → -𝑒𝑥 = -𝑒𝐴) | |
4 | 2, 3 | oveqan12rd 6813 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑦 +𝑒 -𝑒𝑥) = (𝐵 +𝑒 -𝑒𝐴)) |
5 | id 22 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
6 | xnegeq 12243 | . . . 4 ⊢ (𝑦 = 𝐵 → -𝑒𝑦 = -𝑒𝐵) | |
7 | 5, 6 | oveqan12d 6812 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 +𝑒 -𝑒𝑦) = (𝐴 +𝑒 -𝑒𝐵)) |
8 | 1, 4, 7 | ifbieq12d 4252 | . 2 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵))) |
9 | xrsds.d | . . 3 ⊢ 𝐷 = (dist‘ℝ*𝑠) | |
10 | 9 | xrsds 20004 | . 2 ⊢ 𝐷 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥 ≤ 𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))) |
11 | ovex 6823 | . . 3 ⊢ (𝐵 +𝑒 -𝑒𝐴) ∈ V | |
12 | ovex 6823 | . . 3 ⊢ (𝐴 +𝑒 -𝑒𝐵) ∈ V | |
13 | 11, 12 | ifex 4295 | . 2 ⊢ if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ V |
14 | 8, 10, 13 | ovmpt2a 6938 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴 ≤ 𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ifcif 4225 class class class wbr 4786 ‘cfv 6031 (class class class)co 6793 ℝ*cxr 10275 ≤ cle 10277 -𝑒cxne 12148 +𝑒 cxad 12149 distcds 16158 ℝ*𝑠cxrs 16368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-xneg 12151 df-xadd 12152 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-plusg 16162 df-mulr 16163 df-tset 16168 df-ple 16169 df-ds 16172 df-xrs 16370 |
This theorem is referenced by: xrsdsreval 20006 xrsdsreclb 20008 xmetrtri2 22381 xrsxmet 22832 metdscn 22879 |
Copyright terms: Public domain | W3C validator |