![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrs1mnd | Structured version Visualization version GIF version |
Description: The extended real numbers, restricted to ℝ* ∖ {-∞}, form a monoid - in contrast to the full structure, see xrsmgmdifsgrp 19831. (Contributed by Mario Carneiro, 27-Nov-2014.) |
Ref | Expression |
---|---|
xrs1mnd.1 | ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) |
Ref | Expression |
---|---|
xrs1mnd | ⊢ 𝑅 ∈ Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3770 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ⊆ ℝ* | |
2 | xrs1mnd.1 | . . . . 5 ⊢ 𝑅 = (ℝ*𝑠 ↾s (ℝ* ∖ {-∞})) | |
3 | xrsbas 19810 | . . . . 5 ⊢ ℝ* = (Base‘ℝ*𝑠) | |
4 | 2, 3 | ressbas2 15978 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
5 | 1, 4 | mp1i 13 | . . 3 ⊢ (⊤ → (ℝ* ∖ {-∞}) = (Base‘𝑅)) |
6 | xrex 11867 | . . . . 5 ⊢ ℝ* ∈ V | |
7 | difexg 4841 | . . . . 5 ⊢ (ℝ* ∈ V → (ℝ* ∖ {-∞}) ∈ V) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ (ℝ* ∖ {-∞}) ∈ V |
9 | xrsadd 19811 | . . . . 5 ⊢ +𝑒 = (+g‘ℝ*𝑠) | |
10 | 2, 9 | ressplusg 16040 | . . . 4 ⊢ ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g‘𝑅)) |
11 | 8, 10 | mp1i 13 | . . 3 ⊢ (⊤ → +𝑒 = (+g‘𝑅)) |
12 | eldifsn 4350 | . . . . 5 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞)) | |
13 | eldifsn 4350 | . . . . 5 ⊢ (𝑦 ∈ (ℝ* ∖ {-∞}) ↔ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) | |
14 | xaddcl 12108 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) ∈ ℝ*) | |
15 | 14 | ad2ant2r 798 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ ℝ*) |
16 | xaddnemnf 12105 | . . . . . 6 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ≠ -∞) | |
17 | eldifsn 4350 | . . . . . 6 ⊢ ((𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}) ↔ ((𝑥 +𝑒 𝑦) ∈ ℝ* ∧ (𝑥 +𝑒 𝑦) ≠ -∞)) | |
18 | 15, 16, 17 | sylanbrc 699 | . . . . 5 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞})) |
19 | 12, 13, 18 | syl2anb 495 | . . . 4 ⊢ ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞})) |
20 | 19 | 3adant1 1099 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞})) |
21 | eldifsn 4350 | . . . . 5 ⊢ (𝑧 ∈ (ℝ* ∖ {-∞}) ↔ (𝑧 ∈ ℝ* ∧ 𝑧 ≠ -∞)) | |
22 | xaddass 12117 | . . . . 5 ⊢ (((𝑥 ∈ ℝ* ∧ 𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ* ∧ 𝑦 ≠ -∞) ∧ (𝑧 ∈ ℝ* ∧ 𝑧 ≠ -∞)) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧))) | |
23 | 12, 13, 21, 22 | syl3anb 1409 | . . . 4 ⊢ ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞})) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧))) |
24 | 23 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞}))) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧))) |
25 | 0re 10078 | . . . 4 ⊢ 0 ∈ ℝ | |
26 | rexr 10123 | . . . . 5 ⊢ (0 ∈ ℝ → 0 ∈ ℝ*) | |
27 | renemnf 10126 | . . . . 5 ⊢ (0 ∈ ℝ → 0 ≠ -∞) | |
28 | eldifsn 4350 | . . . . 5 ⊢ (0 ∈ (ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ* ∧ 0 ≠ -∞)) | |
29 | 26, 27, 28 | sylanbrc 699 | . . . 4 ⊢ (0 ∈ ℝ → 0 ∈ (ℝ* ∖ {-∞})) |
30 | 25, 29 | mp1i 13 | . . 3 ⊢ (⊤ → 0 ∈ (ℝ* ∖ {-∞})) |
31 | eldifi 3765 | . . . . 5 ⊢ (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*) | |
32 | 31 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → 𝑥 ∈ ℝ*) |
33 | xaddid2 12111 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥) | |
34 | 32, 33 | syl 17 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (0 +𝑒 𝑥) = 𝑥) |
35 | xaddid1 12110 | . . . 4 ⊢ (𝑥 ∈ ℝ* → (𝑥 +𝑒 0) = 𝑥) | |
36 | 32, 35 | syl 17 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 0) = 𝑥) |
37 | 5, 11, 20, 24, 30, 34, 36 | ismndd 17360 | . 2 ⊢ (⊤ → 𝑅 ∈ Mnd) |
38 | 37 | trud 1533 | 1 ⊢ 𝑅 ∈ Mnd |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∧ w3a 1054 = wceq 1523 ⊤wtru 1524 ∈ wcel 2030 ≠ wne 2823 Vcvv 3231 ∖ cdif 3604 ⊆ wss 3607 {csn 4210 ‘cfv 5926 (class class class)co 6690 ℝcr 9973 0cc0 9974 -∞cmnf 10110 ℝ*cxr 10111 +𝑒 cxad 11982 Basecbs 15904 ↾s cress 15905 +gcplusg 15988 ℝ*𝑠cxrs 16207 Mndcmnd 17341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-z 11416 df-dec 11532 df-uz 11726 df-xadd 11985 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-tset 16007 df-ple 16008 df-ds 16011 df-xrs 16209 df-mgm 17289 df-sgrp 17331 df-mnd 17342 |
This theorem is referenced by: xrs1cmn 19834 xrge0subm 19835 xrge00 29814 |
Copyright terms: Public domain | W3C validator |