Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrninxp Structured version   Visualization version   GIF version

Theorem xrninxp 34492
Description: Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020.)
Assertion
Ref Expression
xrninxp ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
Distinct variable groups:   𝑢,𝐴,𝑦,𝑧   𝑢,𝐵,𝑦,𝑧   𝑢,𝐶,𝑦,𝑧   𝑢,𝑅,𝑦,𝑧   𝑢,𝑆,𝑦,𝑧

Proof of Theorem xrninxp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inxp2 34471 . . 3 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥)}
2 df-3an 1074 . . . . 5 ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑢(𝑅𝑆)𝑥) ↔ ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥))
3 3anan12 1082 . . . . 5 ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑢(𝑅𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)))
42, 3bitr3i 266 . . . 4 (((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)))
54opabbii 4870 . . 3 {⟨𝑢, 𝑥⟩ ∣ ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥)} = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
61, 5eqtri 2783 . 2 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
7 cnvopab 5692 . 2 {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))} = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
8 breq2 4809 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑢(𝑅𝑆)𝑥𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))
98anbi2d 742 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑢𝐴𝑢(𝑅𝑆)𝑥) ↔ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩)))
109dfoprab4 7394 . . 3 {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))} = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
1110cnveqi 5453 . 2 {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))} = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
126, 7, 113eqtr2i 2789 1 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
Colors of variables: wff setvar class
Syntax hints:  wa 383  w3a 1072   = wceq 1632  wcel 2140  cin 3715  cop 4328   class class class wbr 4805  {copab 4865   × cxp 5265  ccnv 5266  {coprab 6816  cxrn 34314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-iota 6013  df-fun 6052  df-fv 6058  df-oprab 6819  df-1st 7335  df-2nd 7336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator