![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrnepnf | Structured version Visualization version GIF version |
Description: An extended real other than plus infinity is real or negative infinite. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xrnepnf | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.61 934 | . 2 ⊢ ((((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = +∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = +∞)) | |
2 | elxr 12154 | . . . 4 ⊢ (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | |
3 | df-3or 1071 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞)) | |
4 | or32 890 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞) ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞)) | |
5 | 2, 3, 4 | 3bitri 286 | . . 3 ⊢ (𝐴 ∈ ℝ* ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞)) |
6 | df-ne 2943 | . . 3 ⊢ (𝐴 ≠ +∞ ↔ ¬ 𝐴 = +∞) | |
7 | 5, 6 | anbi12i 604 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∨ 𝐴 = +∞) ∧ ¬ 𝐴 = +∞)) |
8 | renepnf 10288 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ≠ +∞) | |
9 | mnfnepnf 10296 | . . . . . 6 ⊢ -∞ ≠ +∞ | |
10 | neeq1 3004 | . . . . . 6 ⊢ (𝐴 = -∞ → (𝐴 ≠ +∞ ↔ -∞ ≠ +∞)) | |
11 | 9, 10 | mpbiri 248 | . . . . 5 ⊢ (𝐴 = -∞ → 𝐴 ≠ +∞) |
12 | 8, 11 | jaoi 837 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → 𝐴 ≠ +∞) |
13 | 12 | neneqd 2947 | . . 3 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) → ¬ 𝐴 = +∞) |
14 | 13 | pm4.71i 541 | . 2 ⊢ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ↔ ((𝐴 ∈ ℝ ∨ 𝐴 = -∞) ∧ ¬ 𝐴 = +∞)) |
15 | 1, 7, 14 | 3bitr4i 292 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 ≠ +∞) ↔ (𝐴 ∈ ℝ ∨ 𝐴 = -∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 382 ∨ wo 826 ∨ w3o 1069 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 ℝcr 10136 +∞cpnf 10272 -∞cmnf 10273 ℝ*cxr 10274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-rex 3066 df-rab 3069 df-v 3351 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-pw 4297 df-sn 4315 df-pr 4317 df-uni 4573 df-pnf 10277 df-mnf 10278 df-xr 10279 |
This theorem is referenced by: xaddnepnf 12272 xlt2addrd 29857 xrlexaddrp 40078 xrnpnfmnf 40215 |
Copyright terms: Public domain | W3C validator |