![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrmineq | Structured version Visualization version GIF version |
Description: The minimum of two extended reals is equal to the second if the first is bigger. (Contributed by Mario Carneiro, 25-Mar-2015.) |
Ref | Expression |
---|---|
xrmineq | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifid 4262 | . 2 ⊢ if(𝐴 ≤ 𝐵, 𝐵, 𝐵) = 𝐵 | |
2 | xrletri3 12189 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐴 ∈ ℝ*) → (𝐵 = 𝐴 ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) | |
3 | 2 | ancoms 455 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐵 = 𝐴 ↔ (𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵))) |
4 | 3 | biimpar 463 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐵 ≤ 𝐴 ∧ 𝐴 ≤ 𝐵)) → 𝐵 = 𝐴) |
5 | 4 | anassrs 458 | . . . 4 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐵 ≤ 𝐴) ∧ 𝐴 ≤ 𝐵) → 𝐵 = 𝐴) |
6 | 5 | ifeq1da 4253 | . . 3 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐵, 𝐵) = if(𝐴 ≤ 𝐵, 𝐴, 𝐵)) |
7 | 6 | 3impa 1099 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐵, 𝐵) = if(𝐴 ≤ 𝐵, 𝐴, 𝐵)) |
8 | 1, 7 | syl5reqr 2819 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐵 ≤ 𝐴) → if(𝐴 ≤ 𝐵, 𝐴, 𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1070 = wceq 1630 ∈ wcel 2144 ifcif 4223 class class class wbr 4784 ℝ*cxr 10274 ≤ cle 10276 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-pre-lttri 10211 ax-pre-lttrn 10212 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 |
This theorem is referenced by: ssfzunsn 12593 setsstruct 16104 ioondisj2 40229 |
Copyright terms: Public domain | W3C validator |