MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrmax1 Structured version   Visualization version   GIF version

Theorem xrmax1 12220
Description: An extended real is less than or equal to the maximum of it and another. (Contributed by NM, 7-Feb-2007.)
Assertion
Ref Expression
xrmax1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))

Proof of Theorem xrmax1
StepHypRef Expression
1 xrleid 12197 . . . 4 (𝐴 ∈ ℝ*𝐴𝐴)
2 iffalse 4240 . . . . 5 𝐴𝐵 → if(𝐴𝐵, 𝐵, 𝐴) = 𝐴)
32breq2d 4817 . . . 4 𝐴𝐵 → (𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴) ↔ 𝐴𝐴))
41, 3syl5ibrcom 237 . . 3 (𝐴 ∈ ℝ* → (¬ 𝐴𝐵𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴)))
5 id 22 . . . 4 (𝐴𝐵𝐴𝐵)
6 iftrue 4237 . . . 4 (𝐴𝐵 → if(𝐴𝐵, 𝐵, 𝐴) = 𝐵)
75, 6breqtrrd 4833 . . 3 (𝐴𝐵𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
84, 7pm2.61d2 172 . 2 (𝐴 ∈ ℝ*𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
98adantr 472 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  wcel 2140  ifcif 4231   class class class wbr 4805  *cxr 10286  cle 10288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-pre-lttri 10223  ax-pre-lttrn 10224
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-po 5188  df-so 5189  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293
This theorem is referenced by:  xrmaxlt  12226  xrmaxle  12228  max1  12230  limsupgre  14432  pnfnei  21247  ismbfd  23627  dvferm2lem  23969  mdegaddle  24054
  Copyright terms: Public domain W3C validator