![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xrltso | Structured version Visualization version GIF version |
Description: 'Less than' is a strict ordering on the extended reals. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
xrltso | ⊢ < Or ℝ* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrlttri 12186 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ (𝑥 = 𝑦 ∨ 𝑦 < 𝑥))) | |
2 | xrlttr 12187 | . 2 ⊢ ((𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*) → ((𝑥 < 𝑦 ∧ 𝑦 < 𝑧) → 𝑥 < 𝑧)) | |
3 | 1, 2 | isso2i 5220 | 1 ⊢ < Or ℝ* |
Colors of variables: wff setvar class |
Syntax hints: Or wor 5187 ℝ*cxr 10286 < clt 10287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-pre-lttri 10223 ax-pre-lttrn 10224 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-uni 4590 df-br 4806 df-opab 4866 df-mpt 4883 df-id 5175 df-po 5188 df-so 5189 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 |
This theorem is referenced by: xrlttri2 12189 xrlttri3 12190 xrltne 12208 xmullem 12308 xmulasslem 12329 supxr 12357 supxrcl 12359 supxrun 12360 supxrmnf 12361 supxrunb1 12363 supxrunb2 12364 supxrub 12368 supxrlub 12369 infxrcl 12377 infxrlb 12378 infxrgelb 12379 xrinf0 12382 infmremnf 12387 limsupval 14425 limsupgval 14427 limsupgre 14432 ramval 15935 ramcl2lem 15936 prdsdsfn 16348 prdsdsval 16361 imasdsfn 16397 imasdsval 16398 prdsmet 22397 xpsdsval 22408 prdsbl 22518 tmsxpsval2 22566 nmoval 22741 xrge0tsms2 22860 metdsval 22872 iccpnfhmeo 22966 xrhmeo 22967 ovolval 23463 ovolf 23471 ovolctb 23479 itg2val 23715 mdegval 24043 mdegldg 24046 mdegxrf 24048 mdegcl 24049 aannenlem2 24304 nmooval 27949 nmoo0 27977 nmopval 29046 nmfnval 29066 nmop0 29176 nmfn0 29177 xrsupssd 29855 xrge0infssd 29857 infxrge0lb 29860 infxrge0glb 29861 infxrge0gelb 29862 xrsclat 30011 xrge0iifiso 30312 esumval 30439 esumnul 30441 esum0 30442 gsumesum 30452 esumsnf 30457 esumpcvgval 30471 esum2d 30486 omsfval 30687 omsf 30689 oms0 30690 omssubaddlem 30692 omssubadd 30693 mblfinlem2 33779 ovoliunnfl 33783 voliunnfl 33785 volsupnfl 33786 itg2addnclem 33793 radcnvrat 39034 infxrglb 40073 xrgtso 40078 infxr 40100 infxrunb2 40101 infxrpnf 40191 limsup0 40448 limsuppnfdlem 40455 limsupequzlem 40476 supcnvlimsup 40494 limsuplt2 40507 liminfval 40513 limsupge 40515 liminfgval 40516 liminfval2 40522 limsup10ex 40527 liminf10ex 40528 liminflelimsuplem 40529 cnrefiisplem 40577 etransclem48 41021 sge0val 41105 sge0z 41114 sge00 41115 sge0sn 41118 sge0tsms 41119 ovnval2 41284 smflimsuplem1 41551 smflimsuplem2 41552 smflimsuplem4 41554 smflimsuplem7 41557 |
Copyright terms: Public domain | W3C validator |